Back to top

Buildings and Cities

Insulation

Insulation is not new. Villagers and farmers in the north have been using turf roofs for a thousand years. This one is located in the Gjogv Village in the Faroe Islands, a small archipelago located in the Atlantic Ocean between Iceland and Norway with an average temperature of 53 degrees Fahrenheit during the “warm season."

Heat always moves from warmer areas to cooler areas, until a temperature equilibrium is reached. This heat flow presents a central challenge when keeping buildings within a desirable range of 67 to 78 degrees Fahrenheit. To close the gap on unwanted heat gain or loss and maintain comfortable room temperature, we use more energy. Air infiltration accounts for 25 to 60 percent of energy used to heat and cool a home—energy that is simply wasted.

By better insulating a building envelope, heat exchange can be reduced, energy saved, and emissions avoided. What makes insulation effective is its capacity for thermal resistance, measured as R-value—the higher the better. Ideally, a building’s thermal layer should cover all sides—bottom floor, exterior walls, and roof—and be continuous. Sealing gaps and cracks is also critical to a more effective building envelope.   

Insulation is one of the most practical and cost-effective ways to make buildings more energy efficient—both in new construction and through retrofitting older buildings that often are not well encased. At relatively low cost, insulation results in lower utility bills, while keeping out moisture and improving air quality.

Technical summaries for each solution will be available May 1, 2017.

Back to top

Join Us

We would like to stay in touch with you. Please sign up for updates to discover ways you can participate in the work of Drawdown.


Contact

Click to expand
Please send me more information about ways that I can participate as: (check all that apply)