Back to top
Credit: Andrewglaser



This is the Solar Settlement in Freiburg, Germany. A 59-home community, it is the first in the world to have a positive energy balance, with each home producing $5,600 per year in solar energy profits. The way to positive energy is designing homes that are extraordinarily energy efficient, what designer Rolf Disch calls PlusEnergy.

The “macro” grid is a massive electrical network of energy sources. It connects utilities, large fossil-fuel plants, small fossil-fuel plants used to meet peaks in demand, and 24-7 control centers monitoring supply. This centralized setup hinders society’s transition from dirty energy produced in a few places to clean energy produced everywhere.

Enter microgrids. A microgrid is a localized grouping of distributed energy sources, like solar, wind, in-stream hydro, and biomass, together with energy storage or backup generation and load management tools. This system can operate as a stand-alone entity or its users can plug into the larger grid as needed.

Microgrids are nimble, efficient microcosms of the big grid, designed for smaller, diverse energy sources. The use of local supply to serve local demand makes them more resilient and reduces energy lost in transmission and distribution.

Microgrids also aid human and economic development. Globally, 1.1 billion people do not have access to a grid or electricity, most of them in sub-Saharan Africa and Asia. In rural parts of low-income countries, populations are best supplied with electricity from microgrids.


outages or blackouts…economic losses: Saviva Research. “Microgrids and Distributed Energy Resource Management Software.” Saviva Research Review. April 2013.

blackouts [becoming] more frequent: Matthewman, Steve and Hugh Byrd. “Blackouts: A Sociology of Electrical Power Failure.” Social Space (2014): 1-25.

1.1 billion people [without] electricity: IEA and World Bank. Sustainable Energy for All 2015—Progress Toward Sustainable Energy. Washington, D.C.: The World Bank, 2015.

[effective in] rural parts of Asia and Africa: IEA. World Energy Outlook 2010. Paris: International Energy Agency, 2010.

view all book references

Technical Summary


Project Drawdown defines microgrids as: localized groupings of electricity sources and loads that normally operate connected to and synchronously with the traditional centralized power grid, but can disconnect and function autonomously as physical and/or economic conditions dictate. This solution replaces the conventional practice of powering buildings and communities with electricity from the centralized grid.

The defining characteristics of a microgrid are its semi-autonomous capability and the ability to control its loads and supply locally. A typical microgrid could be constituted by distributed generation technologies such as wind, solar, hydropower, or biomass, together with energy storage units or backup generation and load management tools. By enabling the integration of renewable energy sources into the grid, along with storage and demand management, microgrids can play a critical role in the advancement of a flexible and efficient electrical grid. In addition, the use of local sources of energy to serve local loads helps reduce energy loss in transmission and distribution, further increasing the efficiency of the electricity delivery system.

More than one billion people—around 17 percent of the global population—still lack access to a centralized power grid (Greenpeace, 2015). In 2013, more than 95 percent of the people living without electricity were in sub-Saharan Africa and developing Asia countries, mainly living in rural areas (around 80 percent of the world total). At present, population growth is outpacing the efforts of electrification. The International Energy Agency (IEA) anticipates that more than 50 percent of the rural and remote population currently without electricity would be best supplied by mini or microgrids (2014). Providing energy access to these people using low-carbon energy technologies is expected to bring many additional benefits such as improved health, education, and employment. Microgrids also make economic sense in remote and island locations that have historically depended on imported diesel for electricity, in regions with an unreliable conventional grid, and for cell phone towers that rely extensively on expensive diesel-based power.

For roughly 300 million un-electrified households globally, kerosene has been the dominant fuel source for lighting. Several studies indicate that the price paid by microgrid customers for electric lighting is far less than the price for lighting using kerosene and candles (Barefoot Power, 2009).


Because the growth and emissions impacts for this solution are accounted for in the models of renewable energy sources and accompanying enabling technologies, including in-stream hydro, micro wind, rooftop solar, and biomass, paired with distributed energy storage, we do not directly model the growth and impact of microgrids. For higher-income countries, the benefits of microgrid systems fall under the grid flexibility solution, and also under the impacts of increased adoption of decentralized variable renewable energy sources.


Equitable access to energy is a crucial prerequisite for sustainable development. Increasing demand for electricity globally is bound to test the limits of a centralized power system in the near future. Adopting an optimal combination of centralized and decentralized systems can capture both the strength of the central grid and the agility of state-of-the-art technological advancements in a decentralized infrastructure. Microgrids can help bridge this gap while making use of locally available energy resources.

Microgrid infrastructure enables a transition to a decentralized power system that is more reliable, affordable, and sustainable. Investing in microgrids for emission reduction is already profitable in many parts of the world that have historically depended on imported diesel for electricity. But there are also additional benefits, such as improved health due to reduced kerosene consumption in rural communities.

Microgrid installations in grid-connected regions also offer several key advantages, including: optimized energy consumption through better matching of supply with demand; reduced environmental impact through integration of renewable energy sources; increased security of energy supply; provision of cost-efficient electricity infrastructure; and the ability to locally rank power supply for high-priority needs during times of disruption.

In a world that is increasingly dependent on electricity for its very existence, losing access to the power supply due to outages or blackouts is a critical risk that cannot be overlooked. Microgrids, by virtue of being locally managed systems, are resilient against such disruptions in supply and have more control over the local demand.

Full models and technical reports coming in late 2017.

Research Inquiry Form

Want more information on Project Drawdown’s research methodology and models? Complete this form to contact the Drawdown Research team.

Which Drawdown solution sector most interests you? * (choose one)
Do you have a copy of Drawdown: The Most Comprehensive Plan Ever Proposed to Reverse Global Warming? *
What would you like to know about Drawdown’s research methodology and models? * Please note that, due to time and resource constraints, we may not be able to provide extensive information or data.
Other questions, comments, or suggestions:
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Back to top

Join Us

We would like to stay in touch with you. Please sign up for updates to discover ways you can participate in the work of Drawdown.


Click to expand
Please send me more information about ways that I can participate as: (check all that apply)
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.