Back to top

Food

Regenerative Agriculture

Insert caption here.

Conventional wisdom has long held that the world cannot be fed without chemicals and synthetic fertilizers. Evidence points to a new wisdom: The world cannot be fed unless the soil is fed. Regenerative agriculture enhances and sustains the health of the soil by restoring its carbon content, which in turn improves productivity—just the opposite of conventional agriculture.

Regenerative agricultural practices include:

  • no tillage,
  • diverse cover crops,
  • in-farm fertility (no external nutrients),
  • no pesticides or synthetic fertilizers, and
  • multiple crop rotations.

Together, these practices increase carbon-rich soil organic matter. The result: vital microbes proliferate, roots go deeper, nutrient uptake improves, water retention increases, plants are more pest resistant, and soil fertility compounds. Farms are seeing soil carbon levels rise from a baseline of 1 to 2 percent up to 5 to 8 percent over ten or more years, which can add up to 25 to 60 tons of carbon per acre.

It is estimated that at least 50 percent of the carbon in the earth’s soils has been released into the atmosphere over the past centuries. Bringing that carbon back home through regenerative agriculture is one of the greatest opportunities to address human and climate health, along with the financial well-being of farmers.

References

“food-like substances”: Pollan, Michael. In Defense of Food: An Eater’s Manifesto. New York: Penguin, 2008.

Rattan Lal…carbon in the earth’s soils: Olson, Kenneth R., Mahdi Al-Kaisi, Rattan Lal, and Larry Cihacek. “Impact of Soil Erosion on Soil Organic Carbon Stocks.” Journal of Soil and Water Conservation 71, no. 3 (2016): 61A-67A; Schwartz, Judith D. “Soil as Carbon Storehouse: New Weapon in Climate Fight.” Yale Environment 360. March 4, 2014.

soil carbon levels: Toensmeier, Eric. The Carbon Farming Solution. White River Junction, VT: Chelsea Green Publishing, 2016.

Soil erosion and water depletion cost: Lal, Rattan. “Degradation and Resilience of Soils.” Philosophical Transactions of the Royal Society of London B: Biological Sciences 352, no. 1356 (1997): 997-1010; Uri, Noel D. “Agriculture and the Environment—The Problem of Soil Erosion.” Journal of Sustainable Agriculture 16, no. 4 (2000): 71-94.

view all book references

Errata

p. 55

Correction: Farms are seeing organic matter levels rise from a baseline of 1 to 2 percent up to 5 to 8 percent over ten or more years. Every percent of carbon in the soil represents 8.5 tons per acre.

view all errata

Research Inquiry Form

Want more information on Project Drawdown’s research methodology and models? Complete this form to contact the Drawdown Research team.

Which Drawdown solution sector most interests you? * (choose one)
Do you have a copy of Drawdown: The Most Comprehensive Plan Ever Proposed to Reverse Global Warming? *
What would you like to know about Drawdown’s research methodology and models? * Please note that, due to time and resource constraints, we may not be able to provide extensive information or data.
Other questions, comments, or suggestions:
Back to top

Join Us

We would like to stay in touch with you. Please sign up for updates to discover ways you can participate in the work of Drawdown.


Contact

Click to expand
Please send me more information about ways that I can participate as: (check all that apply)