Back to top

Materials

Bioplastic

Globally, we produce roughly 310 million tons of plastic each year. Almost all of it is petro-plastic, made from fossil fuels. Experts, however, estimate that 90 percent of current plastics could be derived from plants instead. Bio-based plastics come from the earth, and those that are biodegradable can return to it—often with lower carbon emissions.

What affords plastics their malleability are chainlike polymers, comprised of many atoms or molecules bound to one another. Cellulose, the most abundant organic material on earth, is a polymer in the cell walls of plants. Chitin is another abundant polymer, found in the shells and exoskeletons of crustaceans and insects. Potatoes, sugarcane, tree bark, algae, and shrimp all contain natural polymers that can be converted to plastic.

Most bioplastics are used in packaging, but they are finding their way into everything from textiles to pharmaceuticals to electronics. Research continues to push the bounds of feedstocks, formulations, and applications. Bioplastics can sequester carbon, especially when made from waste biomass. The big challenge for bioplastics is separation from other waste and appropriate processing. Otherwise, they do not fulfill their promise as more sustainable materials.

Technical summaries for each solution will be available May 1, 2017.

Back to top

Join Us

We would like to stay in touch with you. Please sign up for updates to discover ways you can participate in the work of Drawdown.


Contact

Click to expand
Please send me more information about ways that I can participate as: (check all that apply)