Cut Emissions and Remove Carbon FALO & Nature-Based Carbon Removal Protect & Manage Ecosystems

Protect Peatlands

Highly Recommended
Image
Peatland

The Protect Peatlands solution is defined as legally protecting peatland ecosystems through establishment of protected areas (PAs), which preserves stored carbon and ensures continued carbon sequestration by reducing degradation of the natural hydrology, soils, and/or vegetation. This solution focuses on non-coastal peatlands that have not yet been drained or otherwise severely degraded. Reducing emissions from degraded peatlands is addressed in the Restore Peatlands solution, and mangroves located on peat soils are addressed in the Protect Coastal Wetlands solution.

Last updated September 17, 2025

Solution Basics

ha protected

t CO₂-eq (100-yr)/unit/yr
0.92
units
Current 5.4×10⁷ 01.99×10⁸2.55×10⁸
Achievable (Low to High)

Climate Impact

Gt CO₂-eq (100-yr)/yr
Current 0.05 0.180.24
US$ per t CO₂-eq
0
Emergency Brake

CO₂ , CH₄, N₂O

Solution Basics

ha protected

t CO₂-eq (100-yr)/unit/yr
4.42
units
Current 1.3×10⁷ 01.8×10⁷2.4×10⁷
Achievable (Low to High)

Climate Impact

Gt CO₂-eq (100-yr)/yr
Current 0.06 0.080.11
US$ per t CO₂-eq
0
Emergency Brake

CO₂ , CH₄, N₂O

Solution Basics

ha protected

t CO₂-eq (100-yr)/unit/yr
13.47
units
Current 2.63×10⁷ 09×10⁶1.1×10⁷
Achievable (Low to High)

Climate Impact

Gt CO₂-eq (100-yr)/yr
Current 0.04 0.120.15
US$ per t CO₂-eq
0
Emergency Brake

CO₂ , CH₄, N₂O

Solution Basics

ha protected

t CO₂-eq (100-yr)/unit/yr
13.23
units
Current 3.5×10⁷ 07.2×10⁷9.2×10⁷
Achievable (Low to High)

Climate Impact

Gt CO₂-eq (100-yr)/yr
Current 0.46 0.951.22
US$ per t CO₂-eq
0
Emergency Brake

CO₂ , CH₄, N₂O

Additional Benefits

180
183,187
    183
  • 184
  • 185
  • 186
  • 187
  • 188
189,192,193

Overview

Peatlands are diverse ecosystems characterized by waterlogged, carbon-rich peat soils consisting of partially decomposed dead plant material (Figure 1). They are degraded or destroyed through clearing of vegetation and drainage for agriculture, forestry, peat extraction, or other development. An estimated 600 Gt carbon (~2,200 Gt CO₂‑eq ) is stored in peatlands, twice as much as the carbon stock in all forest biomass (Yu et al., 2010; Pan et al., 2024). Because decomposition occurs very slowly under waterlogged conditions, large amounts of plant material have accumulated in a partially decomposed state over millennia. These carbon-rich ecosystems occupy only 3–4% of land area (Xu et al., 2018b; United Nations Environment Programme [UNEP], 2022). Their protection is both feasible due to their small area and highly impactful due to their carbon density.

Figure 1. These photos show the diversity of peatlands that occur in different places, including a fen peatland and meadow complex in California (top left), a peat swamp in Indonesia (top right), a peat fen and forest in Canada (bottom left), and a peat bog in New Hampshire (bottom right). 

Image
Examples of peatland types

Photo credits: Catie and Jim Bishop | U.S. Department of Agriculture; Rhett A. Butler; Garth Lenz; Linnea Hanson | U.S. Department of Agriculture

When peatlands are drained or disturbed, the rate of carbon loss increases sharply as the accumulated organic matter begins decomposing (Figure 2). Removal of overlying vegetation produces additional GHG emissions while also slowing or stopping carbon uptake. Whereas emissions from vegetation removal occur rapidly following disturbance, peat decomposition and associated emissions can continue for centuries depending on environmental conditions and peat thickness. Peat decomposition after disturbance occurs faster in warmer climates because cold temperatures slow microbial activity. In this analysis, we evaluated tropical, subtropical, temperate, and boreal regions separately.

Figure 2. Greenhouse gas emissions and sequestration in intact peatlands (left) and a drained peatland (right). Intact peatlands are a net greenhouse gas sink, sequestering carbon in peat through photosynthesis but also emitting methane due to waterlogged soils. Drained peatlands are a greenhouse gas source, producing emissions from peat decomposition and drainage canals. Modified from IUCN UK Peatland Programme (2024).

Image
Diagram comparing healthy and degraded peatland

Source:  IUCN UK Peatland Programme. (2024, July 10). New briefing addresses the peatlands and methane debate.

In addition to peat decomposition, biomass removal, and lost carbon sequestration, peatland disturbance impacts methane and nitrous oxide emissions and carbon loss through waterways (Figure 2; Intergovernmental Panel on Climate Change [IPCC] Task Force on National Greenhouse Gas Inventories, 2014; UNEP, 2022). Intact peatlands are a methane source because of methane-producing microbes, which thrive under waterlogged conditions. However, carbon uptake typically outweighs methane emissions. Leifield et al. (2019) found that intact peatlands are a net carbon sink of 0.77 ± 0.15 t CO₂‑eq /ha/yr in temperate and boreal regions and 1.65 ± 0.51 t CO₂‑eq /ha/yr in tropical regions after accounting for methane emissions. Peatland drainage reduces methane emissions from the peatland itself, but the drainage ditches can become potent methane sources (Evans et al., 2015; Peacock et al., 2021). Dissolved and particulate organic carbon also run off through drainage ditches, increasing CO₂ emissions in waterways from microbial activity and abiotic processes. Finally, rates of nitrous oxide emissions increase following drainage as the nitrogen stored in the peat becomes available to microbes. 

Patterns of ongoing peatland drainage are poorly understood at the global scale, but rates of ecosystem disturbance are generally lower in PAs and on Indigenous peoples’ lands than outside of them (Li et al., 2024b; Wolf et al., 2021; Sze et al., 2021). The International Union for Conservation of Nature (IUCN) defines six levels of PAs that vary in their allowed uses, ranging from strict wilderness preserves to sustainable use areas that allow for some extraction of natural resources. All PA levels were included in this analysis (UNEP World Conservation Monitoring Center [UNEP-WCMC] and IUCN, 2024). Due to compounding uncertainties in the distributions of peatlands and Indigenous peoples’ lands, which have not yet been comprehensively mapped, and unknown rates of peatland degradation within Indigenous people’s lands, peatlands within Indigenous peoples’ lands were excluded from the tables but are discussed in the text (Garnett et al., 2018; UNEP-WCMC and IUCN, 2024). 

Impact Calculator

Adjust effectiveness and adoption using range sliders to see resulting climate impact potential.

Effectiveness

0.92
t CO2-eq/ha/yr

Adoption

5.4×10⁷
ha protected
Low
1.99×10⁸
High
2.55×10⁸
5.4×10⁷
current
Achievable Range

Climate Impact

0.05
Gt CO₂-eq/yr (100-yr)
05
which is the equivalent of
0.08%
of global emissions
Adjust effectiveness and adoption using range sliders to see resulting climate impact potential.

Effectiveness

4.42
t CO2-eq/ha/yr

Adoption

1.3×10⁷
ha protected
Low
1.8×10⁷
High
2.4×10⁷
1.3×10⁷
current
Achievable Range

Climate Impact

0.06
Gt CO₂-eq/yr (100-yr)
05
which is the equivalent of
0.10%
of global emissions
Adjust effectiveness and adoption using range sliders to see resulting climate impact potential.

Effectiveness

13.47
t CO2-eq/ha/yr

Adoption

2.63×10⁷
ha protected
Low
9×10⁶
High
1.1×10⁷
2.63×10⁷
current
Achievable Range

Climate Impact

0.35
Gt CO₂-eq/yr (100-yr)
05
which is the equivalent of
0.60%
of global emissions
Adjust effectiveness and adoption using range sliders to see resulting climate impact potential.

Effectiveness

13.23
t CO2-eq/ha/yr

Adoption

3.5×10⁷
ha protected
Low
7.2×10⁷
High
9.2×10⁷
3.5×10⁷
current
Achievable Range

Climate Impact

0.46
Gt CO₂-eq/yr (100-yr)
05
which is the equivalent of
0.78%
of global emissions

The Details

Current State

We estimated that protecting a ha of peatland avoids 0.92–13.47 t CO₂‑eq /ha/yr, with substantially higher emissions reductions in subtropical and tropical regions and lower emissions reductions in boreal regions (100-yr GWP; Table 1a–d; Appendix). 

We estimated effectiveness as the avoided emissions attributable to the reduction in peatland loss conferred by protection (Equation 1). First, we calculated the biome-specific difference between the annual rate of peatland loss outside PAs (Peatland lossbaseline) versus inside PAs (Peatland lossprotected) (Appendix; Conchedda & Tubellio, 2020; Davidson et al., 2014; Miettinen et al., 2011; Miettinen et al., 2016; Uda et al., 2017, Wolf et al., 2021). We then multiplied the avoided peatland loss by the total emissions from one ha of drained peatland over 30 years. This is the sum of the total biomass carbon stock (Carbonbiomass), which degrades relatively quickly; 30 years of annual emissions from peat itself (Carbonflux); and 30 years of lost carbon sequestration potential, reflecting the carbon that would have been taken up by one ha of intact peatland in the absence of degradation (Carbonuptake) (IPCC Task Force on National Greenhouse Gas Inventories, 2014; UNEP, 2022). The carbon flux includes CO₂‑eq emissions from: 1) peat oxidation, 2) dissolved organic carbon loss through drainage, 3) the net change in on-field methane between undrained and drained states, 4) methane emissions from drainage ditches, and 5) on-field nitrous oxide emissions.

Equation 1.

\[Effectiveness = (Peatland\text{ }loss_{baseline} - Peatland\text{ }loss_{protected})\times( Carbon_{biomass} + 30\cdot Carbon_{flux} + 30\cdot Carbon_{uptake}) \]

Without rewetting, peat loss typically persists beyond 30 years and can continue for centuries (Leifield & Menichetti, 2018). Thus, this is a conservative estimate of peatland protection effectiveness that captures near-term impacts, aligns with the 30-yr cost amortization time frame, and is roughly consistent with commonly used 2050 targets. Using a longer time frame produces larger estimates of emissions from degraded peatlands and therefore higher effectiveness of peatland protection.

The effectiveness of peatland protection as defined here reflects only a small percentage of the carbon stored in peatlands because we account for the likelihood that the peatland would be destroyed without protection. Peatland protection is particularly impactful for peatlands at high risk of drainage.

Table 1. Effectiveness of peatland protection at avoiding emissions and sequestering carbon. Regional differences in values are driven by variation in emissions factors and baseline rates of peatland drainage.

Unit: t CO₂‑eq , 100-yr basis/ha of peatland protected/yr

Estimate 0.92

Unit: t CO₂‑eq , 100-yr basis/ha of peatland protected/yr

Estimate 4.42

Unit: t CO₂‑eq , 100-yr basis/ha of peatland protected/yr

Estimate 13.47

Unit: t CO₂‑eq , 100-yr basis/ha of peatland protected/yr

Estimate 13.23

We estimated that the net cost of peatland protection is approximately US$1.5/ha/yr, or $0.25/t CO₂‑eq avoided (Table 2). Data related to the costs of peatland protection are very limited. These estimates reflect global averages rather than regionally specific values, and rarely include data specific to peatlands. The costs of peatland protection include up-front costs of land acquisition and ongoing costs of management and enforcement. The market price of land reflects the opportunity cost of not using the land for other purposes, such as agriculture, forestry, peat extraction, or urban development. Protecting peatlands can also generate revenue through increased tourism. Costs and revenues are highly variable across regions, depending on the costs of land and enforcement and potential for tourism. 

Dienerstein et al. (2024) estimated the initial cost of establishing a protected area for 60 high-biodiversity ecoregions. Amongst the 33 regions that were likely to contain peatlands, the median acquisition cost was US$957/ha, which we amortized over 30 years. Costs of protected area maintenance were estimated at US$9–17/ha/yr (Bruner et al., 2004; Waldron et al., 2020), though these estimates were not specific to peatlands. Additionally, these estimates reflect the costs of effective enforcement and management, but many existing protected areas lack adequate funds for effective enforcement (Adams et al., 2019; Barnes et al., 2018; Burner et al., 2004). Waldron et al. (2020) estimated that, across all ecosystems, tourism revenues directly attributable to protected area establishment were US$43/ha/yr, not including downstream revenues from industries that benefit from increased tourism. Inclusion of a tourism multiplier would substantially increase the estimated economic benefits of peatland protection.

Table 2. Cost per unit climate impact for peatland protection.

Unit: 2023 US$/t CO₂‑eq , 100-yr basis

median 0.25

A learning curve is defined here as falling costs with increased adoption. The costs of peatland protection do not fall with increasing adoption, so there is no learning curve for this solution.

Speed of action refers to how quickly a climate solution physically affects the atmosphere after it is deployed. This is different from speed of deployment, which is the pace at which solutions are adopted.

At Project Drawdown, we define the speed of action for each climate solution as gradualemergency brake, or delayed.

Protect Peatlands is an EMERGENCY BRAKE climate solution. It has the potential to deliver a more rapid impact than gradual and delayed solutions. Because emergency brake solutions can deliver their climate benefits quickly, they can help accelerate our efforts to address dangerous levels of climate change. For this reason, they are a high priority.

Adoption

Because peatlands are characterized by their soils rather than by overlying vegetation, they are difficult to map at the global scale (Minasny et al., 2024). Mapping peatlands remains an active area of research, and the adoption values presented here are uncertain. We estimated that 22.6 Mha of peatlands are located within strictly protected PAs (IUCN classes I or II), and 82.3 Mha are within other or unknown PA classes (Table 3a–e; UNEP, 2022; UNEP-WCMC & IUCN, 2024), representing 22% of total global peatland area (482 Mha). Because of data limitations, we did not include Indigenous peoples’ lands in subsequent analyses despite their conservation benefits. There are an additional 186 Mha of peatlands within Indigenous peoples’ lands that are not classified as PAs, with a large majority (155 Mha) located in boreal regions (Table 3; Garnett et al., 2018; UNEP, 2022).

Given the uncertainty in the global extent of peatlands, estimates of peatland protection vary. The Global Peatlands Assessment estimated that 19% (90.7 Mha) of peatlands are protected (UNEP, 2022), with large regional variations ranging from 35% of peatlands protected in Africa to only 10% in Asia. Using a peatland map from Melton et al. (2012), Austin et al. (2025) estimated that 17% of global peatlands are within PAs, and an additional 27% are located in Indigenous peoples’ lands (excluding Indigenous peoples’ lands in Canada covering large peatland areas).

Table 3. Current peatland area under protection by biome (circa 2023). Estimates are provided for two different forms of protection: “strict” protection, including IUCN classes I and II, and “nonstrict” protection, including all other IUCN classes. Regional values may not sum to global totals due to rounding.

Unit: Mha protected

Area within strict PAs 12.4
Area within non-strict PAs 41.7

Unit: Mha protected

Area within strict PAs 3.0
Area within non-strict PAs 10.1

Unit: Mha protected

Area within strict PAs 1.1
Area within non-strict PAs 1.6

Unit: Mha protected

Area within strict PAs 6.1
Area within non-strict PAs 28.9

Unit: Mha protected

Area within strict PAs 22.6
Area within non-strict PAs 82.3

We calculated the annual rate of new peatland protection based on the year of PA establishment for areas established in 2000–2020. The median annual increase in peatland protection was 0.86 Mha (mean 2.0 Mha; Table 4a–d). This represents a roughly 0.8%/yr increase in peatlands within PAs, or protection of an additional 0.2%/yr of total global peatlands. This suggests that peatland protection is likely occurring at a somewhat slower rate than peatland degradation – which is estimated to be around 0.5% annually at the global scale – though this estimate is highly uncertain and spatially variable (Davidson et al., 2014).

There were large year-to-year differences in how much new peatland area was protected over this period, ranging from only 0.2 Mha in 2016 to 7.9 Mha in 2007. The rate at which peatland protection is increasing has been decreasing, with a median increase of 1.7 Mha/yr between 2000 and 2010 declining to 0.7 Mha/yr during 2010–2020. Recent median adoption of peatland protection by area is highest in boreal (0.5 Mha/yr, Table 4a) and tropical regions (0.2 Mha/yr, Table 4d), followed by temperate regions (0.1 Mha/yr, Table 4b) and subtropical regions (0.01 Mha/yr, Table 4c) (2010–2020). Scaled by total peatland area, however, recent rates of peatland protection are lowest in the subtropics (0.04%/yr), followed by the boreal (0.14%/yr), the tropics (0.16%/yr), and temperate regions (0.19%/yr).

Table 4. Adoption trend for peatland protection in PAs of any IUCN class (2000–2020). The 25th and 75th percentiles reflect only interannual variance.

Unit: Mha of peatland protected/yr

25th percentile 0.24
mean 0.87
median (50th percentile) 0.50
75th percentile 0.89

Unit: Mha of peatland protected/yr

25th percentile 0.07
mean 0.23
median (50th percentile) 0.10
75th percentile 0.28

Unit: Mha of peatland protected/yr

25th percentile 0.00
mean 0.04
median (50th percentile) 0.01
75th percentile 0.04

Unit: Mha of peatland protected/yr

25th percentile 0.05
mean 0.84
median (50th percentile) 0.25
75th percentile 0.83

We considered the adoption ceiling to include all undrained, non-coastal peatlands and estimated this to be 425 Mha, based on the Global Peatlands Database and Global Peatlands Map (UNEP, 2022; Table 5e; Appendix). We estimated that 284 Mha of undrained peatlands remain in boreal regions (Table 5a), 26 Mha in temperate regions (Table 5b), 12 Mha in the subtropics (Table 5c), and 103 Mha in the tropics (Table 5d). The adoption ceiling represents the technical upper limit to adoption of this solution.

There is substantial uncertainty in the global extent of peatlands, which is not quantified in these adoption ceiling values. Estimates of global peatland extent from recent literature include 404 Mha (Melton et al., 2022), 423 Mha (Xu et al., 2018b), 437 Mha (Müller & Joos, 2021), 463 Mha (Leifield & Menichetti, 2018), and 488 Mha (UNEP, 2022). Several studies suggest that the global peatland area may still be underestimated (Minasny et al., 2024; UNEP, 2022). 

Table 5. Adoption ceiling: upper limit for adoption of legal protection of peatlands by biome. Values may not sum to global totals due to rounding.

Unit: Mha protected

Peatland area (Mha) 284

Unit: Mha protected

Peatland area (Mha) 26

Unit: Mha protected

Peatland area (Mha) 12

Unit: Mha protected

Peatland area (Mha) 103

Unit: Mha protected

Peatland area (Mha) 425

UNEP (2022) places a high priority on protecting a large majority of remaining peatlands for both climate and conservation objectives. We defined the achievable range for peatland protection as 70% (low achievable) to 90% (high achievable) of remaining undrained peatlands. Only ~19% of peatlands are currently under formal protection within PAs (UNEP, 2022; UNEP-WCMC and IUCN, 2024). However, approximately 60% of undrained peatlands are under some form of protection if peatlands within Indigenous peoples’ lands are considered (Garnett et al., 2018; UNEP, 2022; UNEP-WCMC and IUCN, 2024). While ambitious, this provides support for our selected achievable range of 70–90% (Table 6a-e). 

Ensuring effective and durable protection of these peatlands from drainage and degradation, including secure land tenure for Indigenous peoples who steward peatlands and other critical ecosystems, is a critical first step. Research suggests that local community leadership, equitable stakeholder engagement, and cross-scalar governance are needed to achieve conservation goals while also balancing social and economic outcomes through sustainable use (Atkinson & Alibašić, 2023; Cadillo & Bennett, 2024; Girkin et al., 2023; Harrison et al., 2019; Suwarno et al., 2015). Sustainable uses of peatlands include some forms of paludiculture, which can involve peatland plant cultivation, fishing, or gathering without disturbance of the hydrology or peat layer (Tan et al., 2021).

Table 6. Range of achievable adoption of peatland protection by biome.

Unit: Mha protected

Current Adoption 54
Achievable – Low 199
Achievable – High 255
Adoption Ceiling 284

Unit: Mha protected

Current Adoption 13
Achievable – Low 18
Achievable – High 24
Adoption Ceiling 26

Unit: Mha protected

Current Adoption 3
Achievable – Low 9
Achievable – High 11
Adoption Ceiling 12

Unit: Mha protected

Current Adoption 35
Achievable – Low 72
Achievable – High 92
Adoption Ceiling 103

Unit: Mha protected

Current Adoption 105
Achievable – Low 297
Achievable – High 382
Adoption Ceiling 425

Impacts

We estimated that PAs currently reduce emissions from peatland degradation by 0.6 Gt CO₂‑eq/yr (Table 7a-e). Achievable levels of peatland protection have the potential to reduce emissions 1.3–1.7 Gt CO₂‑eq/yr, with a technical upper bound of 1.9 Gt CO₂‑eq/yr. The estimate of climate impacts under current adoption does not include the large areas of peatlands protected by Indigenous peoples but not legally recognized as PAs. Inclusion of these areas would increase the current estimated impact of peatland protection to 0.9 Gt CO₂‑eq/yr.

Other published estimates of additional emissions reductions through peatland protection are somewhat lower, with confidence intervals of 0–1.2 Gt CO₂‑eq/yr (Griscom et al., 2017; Humpenöder et al., 2020; Loisel et al., 2021; Strack et al., 2022). These studies vary in their underlying methodology and data, including the extent of peatland, the baseline rate of peatland loss, the potential for protected area expansion, which GHGs are considered, the time frame over which emissions are calculated, and whether they account for vegetation carbon loss or just emissions from the peat itself. 

Table 7. Climate impact at different levels of adoption.

Unit: Gt CO₂ ‑eq/yr, 100-yr basis

Current Adoption 0.05
Achievable – Low 0.18
Achievable – High 0.24
Adoption Ceiling 0.26

Unit: Gt CO₂ ‑eq/yr, 100-yr basis

Current Adoption 0.06
Achievable – Low 0.08
Achievable – High 0.11
Adoption Ceiling 0.12

Unit: Gt CO₂ ‑eq/yr, 100-yr basis

Current Adoption 0.04
Achievable – Low 0.12
Achievable – High 0.15
Adoption Ceiling 0.17

Unit: Gt CO₂ ‑eq/yr, 100-yr basis

Current Adoption 0.46
Achievable – Low 0.95
Achievable – High 1.22
Adoption Ceiling 1.36

Unit: Gt CO₂ ‑eq/yr, 100-yr basis

Current Adoption 0.61
Achievable – Low 1.33
Achievable – High 1.71
Adoption Ceiling 1.90

Extreme Weather Events

Peatland protection can help communities adapt to extreme weather. Because peatlands regulate water flows, they can reduce the risk of droughts and floods (IUCN, 2021; Ritson et al., 2016). Evidence suggests that peatlands can provide a cooling effect to the immediate environment, lowering daytime temperatures and reducing temperature extremes between day and night (Dietrich & Behrendt, 2022; Helbig et al., 2020; Worrall et al., 2022).

Health

When peatlands are drained they are susceptible to fire. Peatland fires can significantly contribute to air pollution because of the way these fires smolder (Uda et al., 2019). Smoke and pollutants, particularly PM2.5, from peatland fires can harm respiratory health and lead to premature mortality (Marlier et al., 2019). A study of peatland fires in Indonesia estimated they contribute to the premature mortality of about 33,100 adults and about 2,900 infants annually (Hein et al., 2022). Researchers have linked exposure to PM2.5 from peatland fires to increased hospitalizations, asthma, and lost workdays (Hein et al., 2022). Peatland protection mitigates exposure to air pollution and can save money from reduced health-care expenditures (Kiely et al., 2021).

Income and Work

Peatlands support the livelihoods of nearby communities, especially those in low- and middle-income countries. In the peatlands of the Amazon and Congo basins, fishing livelihoods depend on aquatic wildlife (Thornton et al., 2020). Peatlands in the Peruvian Amazon provide important goods for trade, such as palm fruit and timber, and are used for hunting by nearby populations (Schulz et al., 2019). Peatlands can also support the livelihoods of women and contribute to gender equality. For example, raw materials – purun – from Indonesian peatlands are used by women to create and sell mats used in significant events such as births, weddings, and burials (Goib et al., 2018).

Nature Protection

Peatlands are home to a wide range of species, supporting biodiversity of flora and an abundance of wildlife (UNEP, 2022; Minayeva et al., 2017; Posa et al., 2011). Because of their unique ecosystem, peatlands provide a habitat for many rare and threatened species (Posa et al., 2011). A study of Indonesian peat swamps found that the IUCN Red List classified approximately 45% of mammals and 33% of birds living in these ecosystems as threatened, vulnerable, or endangered (Posa et al., 2011). Peatlands also support a variety of insect species (Spitzer & Danks, 2006). Because of their sensitivity to environmental changes, some peatland insects can act as indicators of peatland health and play a role in conservation efforts (Spitzer & Danks, 2006).

Water Resources

Peatlands can filter water pollutants and improve water quality and are important sources of potable water for some populations (Minayeva et al., 2017). Xu et al. (2018a) estimated that peatlands store about 10% of freshwater globally, not including glacial water. Peatlands are a significant drinking water source for people in the United Kingdom and Ireland, where they provide potable water for about 71.4 million people (Xu et al., 2018a).

Water Quality

See Water Resources section above.

Other

Permanence, or the durability of stored carbon, is a caveat for emissions avoidance through peatland protection that is not addressed in this analysis. Protected peatlands could be drained if legal protections are reversed or inadequately enforced, resulting in the loss of stored carbon. Additionally, fires on peatlands have become more frequent due to climate change (Turetsky et al., 2015; Loisel et al., 2021), and can produce very large emissions pulses (Konecny et al., 2016; Nelson et al., 2021). In boreal regions, permafrost thaw can trigger large, sustained carbon losses from previously frozen peat (Hugelius et al., 2020; Jones et al., 2017). In tropical regions, climate change-induced changes in precipitation can lower water tables in intact peatlands, increasing risks of peat loss and reducing sequestration potential (Deshmukh et al., 2021). 

Additionality, or the degree to which emissions reductions are above and beyond a baseline, is another important caveat for emissions avoidance through ecosystem protection (Atkinson & Alibašić, 2023; Fuller et al., 2020; Williams et al., 2023). In this analysis, additionality was addressed by using baseline rates of peatland degradation in calculating effectiveness. Evaluating additionality is challenging and remains an active area of research.

Finally, there are substantial uncertainties in the available data on peatland areas and distributions, peatland loss rates, the drivers of peatland loss, the extent and boundaries of PAs, and the efficacy of PAs at reducing peatland disturbance. Emissions dynamics on both intact and cleared peatlands are also uncertain, particularly under different land management practices and in the context of climate change.

Leakage occurs when peatland drainage and clearing moves outside of protected area boundaries and is a risk of relying on peatland protection as an emissions reduction strategy (Harrison & Paoli, 2012; Strack et al., 2022). If the relocated clearing also occurs on peat soils, emissions from peatland drainage and degradation are relocated but not actually reduced. If disturbance is relocated to mineral soils, however, the disturbance-related emissions will typically be lower. Combining peatland protection with policies to reduce incentives for peatland clearing can help avoid leakage.

Peatland protection must be driven by or conducted in close collaboration with local communities, which often depend on peatlands for their livelihoods and economic advancement (Jalilov et al., 2025; Li et al., 2024a; Suwarno et al., 2016). Failure to include local communities in conservation efforts violates community sovereignty and can exacerbate existing socioeconomic inequities (Felipe Cadillo & Bennet, 2024; Thorburn & Kull, 2015). Effective peatland protection requires development of alternative income opportunities for communities currently dependent on peatland drainage, such as tourism; sustainable peatland use practices like paludiculture; or compensation for ecosystem service provisioning, including carbon storage (Evers et al., 2017; Girkin et al., 2023; Suwarno et al., 2016; Syahza et al., 2020; Tan et al., 2021; Uda et al., 2017).

None

Reinforcing

Protected areas often include multiple ecosystems. Peatland protection will likely lead to protection of other ecosystems within the same areas, and the health of nearby ecosystems is improved by the services provided by intact peatlands. 

Restored peatlands need protection to reduce the risk of future disturbance, and the health of protected peatlands can be improved through restoration of adjacent degraded peatlands.

Reducing food loss and waste and improving diets reduce demand for agricultural land. These solutions reduce pressure to convert peatlands to agriculture use, easing expansion of protected areas.

Competing

None

Consensus of effectiveness in reducing emissions and maintaining carbon removal: High

There is high scientific consensus that protecting peatland carbon stocks is a critical component of mitigating climate change (Girkin & Davidson, 2024; Harris et al., 2022; Leifield et al., 2019; Noon et al., 2022; Strack et al., 2022). Globally, an estimated 11–12% of peatlands have been drained for uses such as agriculture, forestry, and harvesting of peat for horticulture and fuel, with much more extensive degradation in temperate and tropical regions (~45%) than in boreal regions (~4%) (Fluet-Chouinard et al., 2023; Leifield & Menichetti, 2018; UNEP, 2022). Rates of peatland degradation are highly uncertain, and the effectiveness of PAs at reducing drainage remains unquantified. In lieu of peatland-specific data on the effectiveness of PAs at reducing drainage, we used estimates from Wolf et al. (2021), who found that PAs reduce forest loss by approximately 40.5% at the global average. 

Carbon stored in peatlands has been characterized as “irrecoverable carbon” because it takes centuries to millennia to accumulate and could not be rapidly recovered if lost (Goldstein et al., 2020; Noon et al., 2021). Degraded peatlands currently emit an estimated 1.3–1.9 Gt CO₂‑eq/yr (excluding fires), equal to ~2–4% of total global emissions (Leifield and Menichetti., 2018; UNEP, 2022). Leifield et al. (2019) projected that without protection or restoration measures, emissions from drained peatlands could produce enough emissions to consume 10–41% of the remaining emissions budget for keeping warming below 1.5–2.0 °C. Peatland drainage had produced a cumulative 80 Gt CO₂‑eq by 2015, equal to nearly two years worth of total global emissions. In a modeling study, Humpenöder et al. (2020) projected that an additional 10.3 Mha of peatlands would be degraded by 2100 in the absence of new protection efforts, increasing annual emissions from degraded peatlands by ~25% (an additional 0.42 Gt CO₂‑eq/yr  in their study). 

The results presented in this document synthesize findings from 11 global datasets, supplemented by four regional studies on peatland loss rates in Southeast Asia. We recognize that geographic bias in the information underlying global data products creates bias, and hope this work inspires research and data sharing on this topic in underrepresented regions.

Take Action

Looking to get involved? Below are some key actions for this solution that can get you started, arranged according to different roles you may play in your professional or personal life.

These actions are meant to be starting points for involvement and are not intended to be prescriptive or necessarily suggest they are the most important or impactful actions to take. We encourage you to explore and get creative!

Lawmakers and Policymakers

  • Set clear designations of remaining peatlands and implement robust monitoring and enforcement methods.
  • Place bans or regulations on draining intact peatlands, compensate farmers for income losses, and offer extension services that promote protection and paludiculture (growing food on peatlands).
  • Grant Indigenous communities full property rights and autonomy and support them in monitoring, managing, and enforcing protected areas.
  • Incorporate peatland protection into national climate plans and international commitments.
  • Coordinate peatland protection efforts horizontally (e.g., across agencies) and vertically (e.g., across subnational, national, and international efforts), ensuring an inclusive process for local and Indigenous communities.
  • Use financial incentives such as subsidies, tax breaks, and payments for ecosystem services (PES) to protect peatlands from development.
  • Synthesize water management regulations to ensure local authorities, renters, and landowners coordinate sufficient water levels in peatlands.
  • Remove harmful agricultural, logging, and mining subsidies.
  • Map and utilize real-time data to monitor the status and condition of peatland areas.
  • Invest public funds in peatland conservation, restoration, sustainable management practices, specialized research facilities, and other R&D efforts.
  • Invest in fire warning, prevention, and response efforts and establish local volunteer fire prevention groups.
  • Work with farmers, civil society, and businesses to develop high-integrity carbon markets for peatlands.

Practitioners

  • Refrain from draining or developing intact peatlands.
  • Invest in peatland conservation, restoration, sustainable management practices, specialized research facilities, and other R&D efforts.
  • Participate in stakeholder engagements and assist policymakers in designating peatlands, creating regulations, and implementing robust monitoring and enforcement methods.
  • Grant Indigenous communities full property rights and autonomy and support them in monitoring, managing, and enforcing protected areas.
  • Ensure protected peatlands don’t displace, violate rights, or reduce access to vital resources for local and Indigenous communities.
  • Assist in managing and monitoring protected peatlands, utilizing real-time monitoring and satellite data.
  • Create sustainable use regulations for protected peatland areas that provide resources to the local community.
  • Conduct proactive land-use planning to avoid infrastructure or development projects that may interfere with protected peatlands or incentivize drainage.
  • Create legal grievance processes, dispute resolution mechanisms, and restitution procedures for violations or disagreements over protected peatlands.
  • Help shift public narratives to mobilize public action and build political will for protecting peatlands by creating educational campaigns and strengthening networks of stakeholders and rightsholders.
  • Take advantage of existing financial incentives such as subsidies, tax breaks, and payments for ecosystem services (PES) to protect peatlands from development.
  • Offer or create market mechanisms such as biodiversity offsets, payments for ecosystem services, voluntary high-integrity carbon markets, and debt-for-nature swaps to fund peatland protection.
  • Synthesize water management regulations to ensure local authorities, renters, and landowners coordinate sufficient water levels in peatlands.
  • Establish coordinating bodies for farmers, landowners, policymakers, and other stakeholders to manage protected areas holistically.
  • Invest in fire warning, prevention, and response efforts and establish local volunteer fire prevention groups.

Business Leaders

  • Create peat-free supply chains, utilizing data, information, and the latest technology to inform product sourcing.
  • Integrate peat-free business and investment policies and practices in net zero strategies.
  • Only purchase carbon credits from high-integrity, verifiable carbon markets and do not use them as replacements for decarbonizing operations.
  • Develop financial instruments to invest in peatlands focusing on supporting Indigenous communities.
  • Conduct proactive land-use planning to avoid infrastructure or development projects that may interfere with protected peatlands or incentivize drainage.
  • Amplify the voices of local communities and civil society to promote robust media coverage.
  • Invest in and support Indigenous and local communities' capacity for legal protection and public relations.
  • Leverage political influence to advocate for stronger peatland protection policies at national and international levels. 

Nonprofit Leaders

  • Ensure operations utilize peat-free products and supply chains.
  • Advocate for protecting peatlands and for public investments.
  • Assist in managing and monitoring protected peatlands, utilizing real-time monitoring and satellite data.
  • Provide financial support for protecting peatlands management, monitoring, and enforcement.
  • Assist in conducting proactive land-use planning to avoid infrastructure or development projects that may interfere with protected peatlands or incentivize drainage.
  • Advocate for creating legal grievance processes, dispute resolution mechanisms, and restitution procedures for violations or disagreements over protected peatlands.
  • Support high-integrity carbon markets, institutions, rules, and norms to cultivate the demand for high-quality carbon credits.
  • Share data, information, and investment frameworks that successfully avoid deforestation to support protected peatlands, businesses, and investors.
  • Help shift public narratives to mobilize public action and build political will for protecting peatlands by creating educational campaigns and strengthening networks of stakeholders and rightsholders.
  • Amplify the voices of local communities and civil society to promote robust media coverage.
  • Invest in and support Indigenous and local communities' capacity for legal protection and public relations.

Investors

  • Create peat-free investment portfolios, utilizing data, information, and the latest technology to inform investments.
  • Invest in peatland protection, monitoring, management, and enforcement mechanisms.
  • Utilize financial mechanisms such biodiversity offsets, payments for ecosystem services, voluntary high-integrity carbon markets, and debt-for-nature swaps to fund peatland protection.
  • Invest in and support Indigenous and local communities' capacity for legal protection and public relations.
  • Share data, information, and investment frameworks that successfully avoid investments that drive peatland destruction to support peatlands, other investors, and NGOs.
  • Help shift public narratives to mobilize public action and build political will for protecting peatlands by creating educational campaigns and strengthening networks of stakeholders and rightsholders.

Philanthropists and International Aid Agencies

  • Ensure operations utilize peat-free products and supply chains.
  • Advocate for protecting peatlands and for public investments.
  • Provide technical assistance to low- and middle-income countries and communities to protect peatlands.
  • Provide financial assistance to low- and middle-income countries and communities for peatland protection.
  • Assist in managing and monitoring protected peatlands, utilizing real-time monitoring and satellite data.
  • Assist in conducting proactive land-use planning to avoid infrastructure or development projects that may interfere with protected peatlands or incentivize drainage.
  • Support and finance high-integrity carbon markets, institutions, rules, and norms to cultivate the demand for high-quality carbon credits.
  • Advocate for creating legal grievance processes, dispute resolution mechanisms, and restitution procedures for violations or disagreements over protected peatlands.
  • Support peatlands, other investors, and NGOs by sharing data, information, and investment frameworks that successfully avoid financing peatland destruction.
  • Help shift public narratives to mobilize public action and build political will for protecting peatlands by creating educational campaigns and strengthening networks of stakeholders and rightsholders.
  • Amplify the voices of local communities and civil society to promote robust media coverage.
  • Invest in and support Indigenous and local communities' capacity for legal protection and public relations.
  • Financially support Indigenous land tenure.

Thought Leaders

  • Advocate for protecting peatlands and for public investments.
  • Assist in managing and monitoring protected peatlands, utilizing real-time monitoring and satellite data.
  • Assist in conducting proactive land-use planning to avoid infrastructure or development projects that may interfere with protected peatlands or incentivize drainage.
  • Provide technical assistance to low- and middle-income countries and communities to protect peatlands.
  • Advocate for creating legal grievance processes, dispute resolution mechanisms, and restitution procedures for violations or disagreements over protected peatlands.
  • Support high-integrity carbon markets, institutions, rules, and norms to cultivate the demand for high-quality carbon credits.
  • Share data, information, and investment frameworks that successfully avoid deforestation to support protected peatlands, businesses, and investors.
  • Help shift public narratives to mobilize public action and build political will for protecting peatlands by creating educational campaigns and strengthening networks of stakeholders and rightsholders.
  • Amplify the voices of local communities and civil society to promote robust media coverage.
  • Support Indigenous and local communities' capacity for legal protection and public relations.

Technologists and Researchers

  • Improve mapping of peatland area, carbon content, emissions data, and monitoring methods, utilizing field measurements, models, satellite imagery, and GIS tools.
  • Develop land-use planning tools that help avoid infrastructure or development projects that may interfere with protecting peatlands or incentivize drainage.
  • Create tools for local communities to monitor peatlands, such as mobile apps, e-learning platforms, and mapping tools.
  • Develop verifiable carbon credits using technology such as blockchain to improve the integrity of carbon markets.
  • Develop supply chain tracking software for investors and businesses seeking to create peat-free portfolios and products.

Communities, Households, and Individuals

  • Ensure purchases and investments utilize peat-free products and supply chains.
  • Advocate for protecting peatlands and for public investments.
  • Invest in fire warning, prevention, and response efforts and establish local volunteer fire prevention groups.
  • Establish coordinating bodies for farmers, landowners, policymakers, and other stakeholders to manage protected areas holistically.
  • Assist in managing and monitoring protected peatlands, utilizing real-time monitoring and satellite data.
  • Assist in conducting proactive land-use planning to avoid infrastructure or development projects that may interfere with protected peatlands or incentivize drainage.
  • Advocate for creating legal grievance processes, dispute resolution mechanisms, and restitution procedures for violations or disagreements over protected peatlands.
  • Help shift public narratives to mobilize public action and build political will for protecting peatlands by creating educational campaigns and strengthening networks of stakeholders and rightsholders.
  • Support Indigenous and local communities' capacity for legal protections and public relations.

“Take Action” Sources

References

Adams, V. M., Iacona, G. D., & Possingham, H. P. (2019). Weighing the benefits of expanding protected areas versus managing existing ones. Nature Sustainability2(5), 404–411. Link to source: https://doi.org/10.1038/s41893-019-0275-5

Atkinson, C. L., & Alibašić, H. (2023). Prospects for governance and climate change resilience in peatland management in Indonesia. Sustainability15(3), Article 3. Link to source: https://doi.org/10.3390/su15031839

Austin, K. G., Elsen, P. R., Coronado, E. N. H., DeGemmis, A., Gallego-Sala, A. V., Harris, L., Kretser, H. E., Melton, J. R., Murdiyarso, D., Sasmito, S. D., Swails, E., Wijaya, A., Winton, R. S., & Zarin, D. (2025). Mismatch between global importance of peatlands and the extent of their protection. Conservation Letters18(1), e13080. Link to source: https://doi.org/10.1111/conl.13080

Barnes, M. D., Glew, L., Wyborn, C., & Craigie, I. D. (2018). Prevent perverse outcomes from global protected area policy. Nature Ecology & Evolution2(5), 759–762. Link to source: https://doi.org/10.1038/s41559-018-0501-y

Bruner, A. G., Gullison, R. E., & Balmford, A. (2004). Financial costs and shortfalls of managing and expanding protected-area systems in developing countries. BioScience54(12), 1119–1126. Link to source: https://doi.org/10.1641/0006-3568(2004)054[1119:FCASOM]2.0.CO;2

Conchedda, G., & Tubiello, F. N. (2020). Drainage of organic soils and GHG emissions: Validation with country data. Earth System Science Data12(4), 3113–3137. Link to source: https://doi.org/10.5194/essd-12-3113-2020

Davidson, N. C. (2014). How much wetland has the world lost? Long-term and recent trends in global wetland area. Marine and Freshwater Research65(10), 934. Link to source: https://doi.org/10.1071/MF14173

Deshmukh, C. S., Julius, D., Desai, A. R., Asyhari, A., Page, S. E., Nardi, N., Susanto, A. P., Nurholis, N., Hendrizal, M., Kurnianto, S., Suardiwerianto, Y., Salam, Y. W., Agus, F., Astiani, D., Sabiham, S., Gauci, V., & Evans, C. D. (2021). Conservation slows down emission increase from a tropical peatland in Indonesia. Nature Geoscience14(7), Article 7. Link to source: https://doi.org/10.1038/s41561-021-00785-2

Dietrich, O., & Behrendt, A. (2022). Wet grassland sites with shallow groundwater conditions: Effects on local meteorological characteristics. Water14(21), Article 21. Link to source: https://doi.org/10.3390/w14213560

Dinerstein, E., Joshi, A. R., Hahn, N. R., Lee, A. T. L., Vynne, C., Burkart, K., Asner, G. P., Beckham, C., Ceballos, G., Cuthbert, R., Dirzo, R., Fankem, O., Hertel, S., Li, B. V., Mellin, H., Pharand-Deschênes, F., Olson, D., Pandav, B., Peres, C. A., … Zolli, A. (2024). Conservation imperatives: Securing the last unprotected terrestrial sites harboring irreplaceable biodiversity. Frontiers in Science2. Link to source: https://doi.org/10.3389/fsci.2024.1349350

Evers, S., Yule, C. M., Padfield, R., O’Reilly, P., & Varkkey, H. (2017). Keep wetlands wet: The myth of sustainable development of tropical peatlands – implications for policies and management. Global Change Biology23(2), 534–549. Link to source: https://doi.org/10.1111/gcb.13422

Felipe Cadillo, M. M., & Bennett, A. (2024). Navigating socio-political threats to Amazonian peatland conservation: Insights from the Imiria Region, Peru. Sustainability16(16), Article 16. Link to source: https://doi.org/10.3390/su16166967

Fluet-Chouinard, E., Stocker, B. D., Zhang, Z., Malhotra, A., Melton, J. R., Poulter, B., Kaplan, J. O., Goldewijk, K. K., Siebert, S., Minayeva, T., Hugelius, G., Joosten, H., Barthelmes, A., Prigent, C., Aires, F., Hoyt, A. M., Davidson, N., Finlayson, C. M., Lehner, B., … McIntyre, P. B. (2023). Extensive global wetland loss over the past three centuries. Nature614(7947), 281–286. Link to source: https://doi.org/10.1038/s41586-022-05572-6

Fuller, C., Ondei, S., Brook, B. W., & Buettel, J. C. (2020). Protected-area planning in the Brazilian Amazon should prioritize additionality and permanence, not leakage mitigation. Biological Conservation248, 108673. Link to source: https://doi.org/10.1016/j.biocon.2020.108673

Garnett, S. T., Burgess, N. D., Fa, J. E., Fernández-Llamazares, Á., Molnár, Z., Robinson, C. J., Watson, J. E. M., Zander, K. K., Austin, B., Brondizio, E. S., Collier, N. F., Duncan, T., Ellis, E., Geyle, H., Jackson, M. V., Jonas, H., Malmer, P., McGowan, B., Sivongxay, A., & Leiper, I. (2018). A spatial overview of the global importance of Indigenous lands for conservation. Nature Sustainability1(7), 369–374. Link to source: https://doi.org/10.1038/s41893-018-0100-6

Girkin, N. T., & Davidson, S. J. (2024). Protect peatlands to achieve climate goals. Science383(6682), 490–490. Link to source: https://doi.org/10.1126/science.adn4001

Girkin, N. T., Burgess, P. J., Cole, L., Cooper, H. V., Honorio Coronado, E., Davidson, S. J., Hannam, J., Harris, J., Holman, I., McCloskey, C. S., McKeown, M. M., Milner, A. M., Page, S., Smith, J., & Young, D. (2023). The three-peat challenge: Business as usual, responsible agriculture, and conservation and restoration as management trajectories in global peatlands. Carbon Management14(1), 2275578. Link to source: https://doi.org/10.1080/17583004.2023.2275578

Goib, B. K., Fitriani, N., Wicaksono, S., & Chitra, J. (2018). Restoring peat, improving welfare, and empowering women: Can we have it all? Link to source: https://wri-indonesia.org/en/insights/restoring-peat-improving-welfare-and-empowering-women-can-we-have-it-all

Goldstein, A., Turner, W. R., Spawn, S. A., Anderson-Teixeira, K. J., Cook-Patton, S., Fargione, J., Gibbs, H. K., Griscom, B., Hewson, J. H., Howard, J. F., Ledezma, J. C., Page, S., Koh, L. P., Rockström, J., Sanderman, J., & Hole, D. G. (2020). Protecting irrecoverable carbon in Earth’s ecosystems. Nature Climate Change10(4), 287–295. Link to source: https://doi.org/10.1038/s41558-020-0738-8

Griscom, B. W., Adams, J., Ellis, P. W., Houghton, R. A., Lomax, G., Miteva, D. A., Schlesinger, W. H., Shoch, D., Siikamäki, J. V., Smith, P., Woodbury, P., Zganjar, C., Blackman, A., Campari, J., Conant, R. T., Delgado, C., Elias, P., Gopalakrishna, T., Hamsik, M. R., … Fargione, J. (2017). Natural climate solutions. Proceedings of the National Academy of Sciences114(44), 11645–11650. Link to source: https://doi.org/10.1073/pnas.1710465114

Harris, L. I., Richardson, K., Bona, K. A., Davidson, S. J., Finkelstein, S. A., Garneau, M., McLaughlin, J., Nwaishi, F., Olefeldt, D., Packalen, M., Roulet, N. T., Southee, F. M., Strack, M., Webster, K. L., Wilkinson, S. L., & Ray, J. C. (2022). The essential carbon service provided by northern peatlands. Frontiers in Ecology and the Environment20(4), 222–230. Link to source: https://doi.org/10.1002/fee.2437

Harrison, M. E., & Paoli, G. D. (2012). Managing the risk of biodiversity leakage from prioritising REDD+ in the most carbon-rich forests: The case study of peat-swamp forests in Kalimantan, Indonesia. Tropical Conservation Science5(4), 426–433. Link to source: https://doi.org/10.1177/194008291200500402

Hein, L., Spadaro, J. V., Ostro, B., Hammer, M., Sumarga, E., Salmayenti, R., Boer, R., Tata, H., Atmoko, D., & Castañeda, J.-P. (2022). The health impacts of Indonesian peatland fires. Environmental Health21(1), 62. Link to source: https://doi.org/10.1186/s12940-022-00872-w

Helbig, M., Waddington, J. M., Alekseychik, P., Amiro, B., Aurela, M., Barr, A. G., Black, T. A., Carey, S. K., Chen, J., Chi, J., Desai, A. R., Dunn, A., Euskirchen, E. S., Flanagan, L. B., Friborg, T., Garneau, M., Grelle, A., Harder, S., Heliasz, M., … Schulze, C. (2020). The biophysical climate mitigation potential of boreal peatlands during the growing season. Environmental Research Letters15(10), 104004. Link to source: https://doi.org/10.1088/1748-9326/abab34

Hugelius, G., Loisel, J., Chadburn, S., Jackson, R. B., Jones, M., MacDonald, G., Marushchak, M., Olefeldt, D., Packalen, M., Siewert, M. B., Treat, C., Turetsky, M., Voigt, C., & Yu, Z. (2020). Large stocks of peatland carbon and nitrogen are vulnerable to permafrost thaw. Proceedings of the National Academy of Sciences117(34), 20438–20446. Link to source: https://doi.org/10.1073/pnas.1916387117

Humpenöder, F., Karstens, K., Lotze-Campen, H., Leifeld, J., Menichetti, L., Barthelmes, A., & Popp, A. (2020). Peatland protection and restoration are key for climate change mitigation. Environmental Research Letters15(10), 104093. Link to source: https://doi.org/10.1088/1748-9326/abae2a

IPCC Task Force on National Greenhouse Gas Inventories. (2014). 2013 supplement to the 2006 IPCC guidelines for national greenhouse gas inventories: Wetlands (T. Hiraishi, T. Krug, K. Tanabe, N. Srivastava, J. Baasansuren, M. Fukuda, & T. G. Troxler, Eds.). Intergovernmental Panel on Climate Change. Link to source: https://www.ipcc.ch/site/assets/uploads/2018/03/Wetlands_Supplement_Entire_Report.pdf

IUCN. (2021). Peatlands and climate change (IUCN Issues Briefs). Link to source: https://iucn.org/sites/default/files/2022-04/iucn_issues_brief_peatlands_and_climate_change_final_nov21.pdf

IUCN UK Peatland Programme. (2024, July 10). New briefing addresses the peatlands and methane debate. Link to source: https://www.iucn-uk-peatlandprogramme.org/news/new-briefing-addresses-peatlands-and-methane-debate

Jalilov, S.-M., Rochmayanto, Y., Hidayat, D. C., Raharjo, J. T., Mendham, D., & Langston, J. D. (2025). Unveiling economic dimensions of peatland restoration in Indonesia: A systematic literature review. Ecosystem Services71, 101693. Link to source: https://doi.org/10.1016/j.ecoser.2024.101693

Jones, M. C., Harden, J., O’Donnell, J., Manies, K., Jorgenson, T., Treat, C., & Ewing, S. (2017). Rapid carbon loss and slow recovery following permafrost thaw in boreal peatlands. Global Change Biology23(3), 1109–1127. Link to source: https://doi.org/10.1111/gcb.13403

Kiely, L., Spracklen, D. V., Arnold, S. R., Papargyropoulou, E., Conibear, L., Wiedinmyer, C., Knote, C., & Adrianto, H. A. (2021). Assessing costs of Indonesian fires and the benefits of restoring peatland. Nature Communications12(1), 7044. Link to source: https://doi.org/10.1038/s41467-021-27353-x

Konecny, K., Ballhorn, U., Navratil, P., Jubanski, J., Page, S. E., Tansey, K., Hooijer, A., Vernimmen, R., & Siegert, F. (2016). Variable carbon losses from recurrent fires in drained tropical peatlands. Global Change Biology22(4), 1469–1480. Link to source: https://doi.org/10.1111/gcb.13186

Leifeld, J., & Menichetti, L. (2018). The underappreciated potential of peatlands in global climate change mitigation strategies. Nature Communications9(1), 1071. Link to source: https://doi.org/10.1038/s41467-018-03406-6

Leifeld, J., Wüst-Galley, C., & Page, S. (2019). Intact and managed peatland soils as a source and sink of GHGs from 1850 to 2100. Nature Climate Change9(12), 945–947. Link to source: https://doi.org/10.1038/s41558-019-0615-5

Li, B. V., Wu, S., Pimm, S. L., & Cui, J. (2024a). The synergy between protected area effectiveness and economic growth. Current Biology34(13), 2907-2920.e5. Link to source: https://doi.org/10.1016/j.cub.2024.05.044

Li, G., Fang, C., Watson, J. E. M., Sun, S., Qi, W., Wang, Z., & Liu, J. (2024b). Mixed effectiveness of global protected areas in resisting habitat loss. Nature Communications15(1), 8389. Link to source: https://doi.org/10.1038/s41467-024-52693-9

Loisel, J., Gallego-Sala, A. V., Amesbury, M. J., Magnan, G., Anshari, G., Beilman, D. W., Benavides, J. C., Blewett, J., Camill, P., Charman, D. J., Chawchai, S., Hedgpeth, A., Kleinen, T., Korhola, A., Large, D., Mansilla, C. A., Müller, J., van Bellen, S., West, J. B., … Wu, J. (2021). Expert assessment of future vulnerability of the global peatland carbon sink. Nature Climate Change11(1), 70–77. Link to source: https://doi.org/10.1038/s41558-020-00944-0

Marlier, M. E., Liu, T., Yu, K., Buonocore, J. J., Koplitz, S. N., DeFries, R. S., Mickley, L. J., Jacob, D. J., Schwartz, J., Wardhana, B. S., & Myers, S. S. (2019). Fires, smoke exposure, and public health: An integrative framework to maximize health benefits from peatland restoration. GeoHealth3(7), 178–189. Link to source: https://doi.org/10.1029/2019GH000191

Melton, J. R., Chan, E., Millard, K., Fortier, M., Winton, R. S., Martín-López, J. M., Cadillo-Quiroz, H., Kidd, D., & Verchot, L. V. (2022). A map of global peatland extent created using machine learning (Peat-ML). Geoscientific Model Development15(12), 4709–4738. https://doi.org/10.5194/gmd-15-4709-2022

Miettinen, J., Shi, C., & Liew, S. C. (2011). Deforestation rates in insular Southeast Asia between 2000 and 2010. Global Change Biology17(7), 2261–2270. https://doi.org/10.1111/j.1365-2486.2011.02398.x

Miettinen, J., Shi, C., & Liew, S. C. (2016). Land cover distribution in the peatlands of Peninsular Malaysia, Sumatra and Borneo in 2015 with changes since 1990. Global Ecology and Conservation6, 67–78. https://doi.org/10.1016/j.gecco.2016.02.004

Minasny, B., Adetsu, D. V., Aitkenhead, M., Artz, R. R. E., Baggaley, N., Barthelmes, A., Beucher, A., Caron, J., Conchedda, G., Connolly, J., Deragon, R., Evans, C., Fadnes, K., Fiantis, D., Gagkas, Z., Gilet, L., Gimona, A., Glatzel, S., Greve, M. H., … Zak, D. (2024). Mapping and monitoring peatland conditions from global to field scale. Biogeochemistry167(4), 383–425. https://doi.org/10.1007/s10533-023-01084-1

Minayeva, T. Yu., Bragg, O. M., & Sirin, A. A. (2017). Towards ecosystem-based restoration of peatland biodiversity. Mires and Peat19, 1–36. https://doi.org/10.19189/MaP.2013.OMB.150

Müller, J., & Joos, F. (2021). Committed and projected future changes in global peatlands – continued transient model simulations since the Last Glacial Maximum. Biogeosciences18(12), 3657–3687. https://doi.org/10.5194/bg-18-3657-2021

Nelson, K., Thompson, D., Hopkinson, C., Petrone, R., & Chasmer, L. (2021). Peatland-fire interactions: A review of wildland fire feedbacks and interactions in Canadian boreal peatlands. Science of The Total Environment769, 145212. Link to source: https://doi.org/10.1016/j.scitotenv.2021.145212

Noon, M. L., Goldstein, A., Ledezma, J. C., Roehrdanz, P. R., Cook-Patton, S. C., Spawn-Lee, S. A., Wright, T. M., Gonzalez-Roglich, M., Hole, D. G., Rockström, J., & Turner, W. R. (2022). Mapping the irrecoverable carbon in Earth’s ecosystems. Nature Sustainability5(1), 37–46. Link to source: https://doi.org/10.1038/s41893-021-00803-6

Pan, Y., Birdsey, R. A., Phillips, O. L., Houghton, R. A., Fang, J., Kauppi, P. E., Keith, H., Kurz, W. A., Ito, A., Lewis, S. L., Nabuurs, G.-J., Shvidenko, A., Hashimoto, S., Lerink, B., Schepaschenko, D., Castanho, A., & Murdiyarso, D. (2024). The enduring world forest carbon sink. Nature631(8021), 563–569. Link to source: https://doi.org/10.1038/s41586-024-07602-x

Peacock, M., Audet, J., Bastviken, D., Futter, M. N., Gauci, V., Grinham, A., Harrison, J. A., Kent, M. S., Kosten, S., Lovelock, C. E., Veraart, A. J., & Evans, C. D. (2021). Global importance of methane emissions from drainage ditches and canals. Environmental Research Letters16(4), 044010.  https://doi.org/10.1088/1748-9326/abeb36

Posa, M. R. C., Wijedasa, L. S., & Corlett, R. T. (2011). Biodiversity and conservation of tropical peat swamp forests. BioScience61(1), 49–57. Link to source: https://doi.org/10.1525/bio.2011.61.1.10

Ritson, J. P., Bell, M., Brazier, R. E., Grand-Clement, E., Graham, N. J. D., Freeman, C., Smith, D., Templeton, M. R., & Clark, J. M. (2016). Managing peatland vegetation for drinking water treatment. Scientific Reports6(1), 36751. Link to source: https://doi.org/10.1038/srep36751

Sasmito, S. D., Taillardat, P., Adinugroho, W. C., Krisnawati, H., Novita, N., Fatoyinbo, L., Friess, D. A., Page, S. E., Lovelock, C. E., Murdiyarso, D., Taylor, D., & Lupascu, M. (2025). Half of land use carbon emissions in Southeast Asia can be mitigated through peat swamp forest and mangrove conservation and restoration. Nature Communications16(1), 740. Link to source: https://doi.org/10.1038/s41467-025-55892-0

Schulz, C., Martín Brañas, M., Núñez Pérez, C., Del Aguila Villacorta, M., Laurie, N., Lawson, I. T., & Roucoux, K. H. (2019). Uses, cultural significance, and management of peatlands in the Peruvian Amazon: Implications for conservation. Biological Conservation235, 189–198. Link to source: https://doi.org/10.1016/j.biocon.2019.04.005

Spitzer, K., & Danks, H. V. (2006). Insect biodiversity of boreal peat bogs. Annual Review of Entomology51, 137–161. Link to source: https://doi.org/10.1146/annurev.ento.51.110104.151036

Strack, M., Davidson, S. J., Hirano, T., & Dunn, C. (2022). The potential of peatlands as nature-based climate solutions. Current Climate Change Reports8(3), 71–82. Link to source: https://doi.org/10.1007/s40641-022-00183-9

Suwarno, A., Hein, L., & Sumarga, E. (2016). Who benefits from ecosystem services? A case study for central Kalimantan, Indonesia. Environmental Management57(2), 331–344. Link to source: https://doi.org/10.1007/s00267-015-0623-9

Syahza, A., Suswondo, Bakce, D., Nasrul, B., Irianti, W., & Irianti, M. (2020). Peatland policy and management strategy to support sustainable development in Indonesia. Journal of Physics: Conference Series1655, 012151. Link to source: https://doi.org/10.1088/1742-6596/1655/1/012151

Sze, J. S., Carrasco, L. R., Childs, D., & Edwards, D. P. (2021). Reduced deforestation and degradation in Indigenous Lands pan-tropically. Nature Sustainability5(2), 123–130. Link to source: https://doi.org/10.1038/s41893-021-00815-2

Tan, Z. D., Lupascu, M., & Wijedasa, L. S. (2021). Paludiculture as a sustainable land use alternative for tropical peatlands: A review. Science of The Total Environment753, 142111. Link to source: https://doi.org/10.1016/j.scitotenv.2020.142111

Thorburn, C. C., & Kull, C. A. (2015). Peatlands and plantations in Sumatra, Indonesia: Complex realities for resource governance, rural development and climate change mitigation. Asia Pacific Viewpoint56(1), 153–168. Link to source: https://doi.org/10.1111/apv.12045

Thornton, S. A., Setiana, E., Yoyo, K., Dudin, Yulintine, Harrison, M. E., Page, S. E., & Upton, C. (2020). Towards biocultural approaches to peatland conservation: The case for fish and livelihoods in Indonesia. Environmental Science & Policy114, 341–351. Link to source: https://doi.org/10.1016/j.envsci.2020.08.018

Turetsky, M. R., Benscoter, B., Page, S., Rein, G., van der Werf, G. R., & Watts, A. (2015). Global vulnerability of peatlands to fire and carbon loss. Nature Geoscience8(1), 11–14. Link to source: https://doi.org/10.1038/ngeo2325

Uda, S. K., Hein, L., & Sumarga, E. (2017). Towards sustainable management of Indonesian tropical peatlands. Wetlands Ecology and Management25(6), 683–701. Link to source: https://doi.org/10.1007/s11273-017-9544-0

Uda, S. K., Hein, L., & Atmoko, D. (2019). Assessing the health impacts of peatland fires: A case study for Central Kalimantan, Indonesia. Environmental Science and Pollution Research26(30), 31315–31327. Link to source: https://doi.org/10.1007/s11356-019-06264-x

UNEP. (2022). Global peatlands assessment: The state of the world’s peatlands: Evidence for action toward the conservation, restoration, and sustainable management of peatlands. Link to source: https://www.unep.org/resources/global-peatlands-assessment-2022

UNEP-WCMC and IUCN. (2024). Protected planet reportLink to source: https://digitalreport.protectedplanet.net

Waldron, A., Adams, V., Allan, J., Arnell, A., Asner, G., Atkinson, S., Baccini, A., Baillie, J. E. M., Balmford, A., Beau, J. A., Brander, L., Brondizio, E., Bruner, A., Burgess, N., Burkart, K., Butchart, S., Button, R., Carrasco, R., Cheung, W., …Zhang, Y. P. (2020). Protecting 30% of the planet for nature: Costs, benefits and economic implications. Link to source: https://pure.iiasa.ac.at/id/eprint/16560/1/Waldron_Report_FINAL_sml.pdf

Williams, M., Reay, D., & Smith, P. (2023). Avoiding emissions versus creating sinks—Effectiveness and attractiveness to climate finance. Global Change Biology29(8), 2046–2049. Link to source: https://doi.org/10.1111/gcb.16598

Wolf, C., Levi, T., Ripple, W. J., Zárrate-Charry, D. A., & Betts, M. G. (2021). A forest loss report card for the world’s protected areas. Nature Ecology & Evolution5(4), 520–529. Link to source: https://doi.org/10.1038/s41559-021-01389-0

Worrall, F., Howden, N. J. K., Burt, T. P., Rico-Ramirez, M. A., & Kohler, T. (2022). Local climate impacts from ongoing restoration of a peatland. Hydrological Processes36(3), e14496. Link to source: https://doi.org/10.1002/hyp.14496

Xu, J., Morris, P. J., Liu, J., & Holden, J. (2018a). Hotspots of peatland-derived potable water use identified by global analysis. Nature Sustainability1(5), 246–253. Link to source: https://doi.org/10.1038/s41893-018-0064-6

Xu, J., Morris, P. J., Liu, J., & Holden, J. (2018b). PEATMAP: Refining estimates of global peatland distribution based on a meta-analysis. CATENA160, 134–140. Link to source: https://doi.org/10.1016/j.catena.2017.09.010

Yu, Z., Loisel, J., Brosseau, D. P., Beilman, D. W., & Hunt, S. J. (2010). Global peatland dynamics since the Last Glacial Maximum. Geophysical Research Letters37(13), L13402. Link to source: https://doi.org/10.1029/2010GL043584

Appendix

This analysis quantifies the emissions associated with peatland degradation and their potential reduction via establishment of Protected Areas (PAs). We leveraged multiple data products, including national-scale peatland area estimates, a peatland distribution map, shapefiles of PAs and Indigenous peoples’ lands, available data on rates of peatland degradation by driver, country-scale data on reductions in ecosystem degradation inside of PAs, maps of biomass carbon stocks, and biome-level emissions factors from disturbed peat soils. This appendix describes the source data products and how they were integrated. 

Peatland Extent

The global extent and distribution of peatlands is highly uncertain, and all existing peatland maps have limitations. Importantly, there is no globally accepted definition of a peatland, and different countries and data products use variable thresholds for peat depth and carbon content to define peatlands. The Global Peatland Assessment was a recent comprehensive effort to compile and harmonize existing global peatland area estimates (UNEP, 2022). We rely heavily on two products resulting from this effort: a national-scale dataset of peatland area titled the Global Peatland Database (GPD) and a map of likely peatland areas titled the Global Peatlands Map (GPM; 1 km resolution). 

Scaling Procedures

The GPM represents a known overestimate of the global peatland area, so we scaled area estimates derived from spatially explicit analyses dependent on the GPM to match total areas from the GPD. To develop a map of country-level scaling factors, we first calculated the peatland area within each country from the GPM. We calculated the country-level scaling factors as the country-level GPD values divided by the associated GPM values and converted them to a global raster. Some countries had peatland areas represented in either the GPD or GPM, but not both. Four countries had peatland areas in the GPM that were not present in the GPD, which contained 0.51 Mha of peatlands per the GPM. These areas were left unscaled. There were 38 countries with peatland areas in the GPD that did not have areas in the GPM, containing a total 0.70 Mha of peatlands. These areas, which represented 0.14% of the total peatland area in the GPD, were excluded from the scaled maps. We then multiplied the pixel-level GPM values by the scalar raster. Because of the missing countries, this scaling step very slightly overestimated (by 0.4%) total peatlands relative to the GPD. To account for this, we multiplied this intermediate map by a final global scalar (calculated as the global GPM total divided by the GPD total). This process produced a map with the same peatland distribution as the GPM but a total area that summed to that reported in the GPD.

Exclusion of Coastal Peatlands

Many coastal wetlands have peat soils, though the extent of this overlap has not been well quantified. Coastal wetlands are handled in the Protect Coastal Wetlands solution, so we excluded them from this solution to avoid double-counting. Because of the large uncertainties in both the peatland maps and available maps of coastal wetlands, we were not confident that the overlap between the two sets of maps provided a reliable estimate of the proportion of coastal wetlands located on peat soils. Therefore, we took the conservative approach of excluding all peatland pixels that were touching or overlapping with the coastline. This reduced the total peatland area considered in this solution by 5.33 Mha (1.1%). We additionally excluded degraded peatlands from the adoption ceiling and achievable range using country-level data from the GPD. Degraded peatlands will continue to be emissions sources until they are restored, so protection alone will not confer an emissions benefit.

Total Peatland Area

We conducted the analyses by latitude bands (tropical: –23.4° to 23.4°; subtropical: –35° to –23.4° and 23.4° to 35°; temperate: –35° to –50° and 35° to 50°; boreal: <–50° and >50°) in order to retain some spatial variability in emissions factors and degradation rates and drivers. We calculated the total peatland area within each latitude band based on both the scaled and unscaled peatland maps with coastal pixels excluded. We used these values as the adoption ceiling and for subsequent calculations of protected areas. 

Protected Peatland Areas

We identified protected peatland areas using the World Database on Protected Areas (WDPA, 2024), which contains boundaries for each PA and additional information, including their establishment year and IUCN management category (Ia to VI, not applicable, not reported, and not assigned). For each PA polygon, we extracted the peatland area from the unscaled version of the GPM with coastal pixels removed. 

Each PA was classified into climate zones (described above) based on the midpoint between its minimum and maximum latitude. Then, protected peatland areas were summed to the IUCN class-climate zone level, and the proportion of peatlands protected within each was calculated by dividing the protected area by the unscaled total area in each climate zone. The proportion of area protected was then multiplied by the scaled total area for each zone to calculate adoption in hectares within each IUCN class and climate zone. To evaluate trends in adoption over time, we aggregated protected areas by establishment year as reported in the WDPA. We used the same procedure to calculate the proportion of area protected using the unscaled maps, and then scale for the total area by biome. 

We used the maps of Indigenous people’s lands from Garnett et al. 2018 to identify Indigenous people’s lands that were not inside of established PAs. The total peatland area within Indigenous people’s lands process as above.

Peatland Degradation and Emissions

Broadly, we estimated annual, per-ha emissions savings from peatland protection as the difference between net carbon exchange in a protected peatland versus an unprotected peatland, accounting for all emissions pathways, the drivers of disturbance, the baseline rates of peatland disturbance, and the effectiveness of PAs at reducing ecosystem degradation. In brief, our calculation of the effectiveness of peatland protection followed Equation S1, in which the annual peatland loss avoided due to protection (%/yr) is multiplied by the 30-yr cumulative sum of emissions per ha of degraded peatland (CO₂‑eq /ha over a 30-yr period). These two terms are described in depth in the subsequent sections. 

Equation A1.

\[ Effectiveness = Peatland\text{ }loss_{avoided} \times \sum_{t=1}^{30}{Emissions} \]

Peatland Degradation Rates 

We calculated the avoided rate of peatland loss (%/yr) as the difference between the baseline rate of peatland loss without protection and the estimated rate of peatland loss within PAs (Equation A2), since PAs do not confer complete protection from ecosystem degradation. 

Equation A2.

\[ Peatland\text{ }loss_{avoided} = Peatland\text{ }loss_{baseline} \times Reduction\text{ }in\text{ }loss \]

We compiled baseline estimates of the current rates of peatland degradation from all causes (%/yr) from the existing literature (Table A1). Unfortunately, data on the rate of peatland loss within PAs are not available. However, satellite data have enabled in-depth, global-scale studies of the effectiveness of PAs at reducing tree cover loss. While not all peatlands are forested and degradation dynamics on peatlands can differ from those on forests writ large, these estimates are a reasonable approximation of the effectiveness of PAs at reducing peatland loss. We used the country-level estimates of the proportionate reduction in loss inside versus outside of PAs from Wolf et al. (2021), which we aggregated to latitude bands based on the median latitude of each country (Table A1).

Table A1. Biome-level annual baseline rate of peatland loss, the effectiveness of protection at reducing loss, and the annual avoided rate of peatland loss under protection.

Climate Zone Mean Annual Peatland Loss (%/yr) Proportionate Reduction in Loss Under Protection Avoided Loss Under Protection (%/yr)
Boreal 0.3% 0.44 0.13%
Subtropic 1.2% 0.60 0.73%
Temperate 0.6% 0.56 0.33%
Tropic 1.5% 0.41 0.63%

Emissions Factors for Peatland Degradation

Equation S3 provides an overview of the calculation of emissions from degraded peatlands. In brief, we calculated cumulative emissions as the biomass carbon stock plus the 30-yr total of CO₂‑equivalent fluxes from peat oxidation (Pox), dissolved organic carbon losses (DOC), methane from drainage ditches (Mditch), on-field methane (Mfield), on-field nitrous oxide (N) and the lost net sequestration from an intact peatland, accounting for carbon sequestration in peat and methane emissions from intact peatlands (Seqloss).

Equation A3.

\[ \sum_{t=1}^{30}{Emissions} = Biomass + \sum_{t=1}^{30}{(P_{ox} + DOC + M_{ditch} + M_{field} + N + Seq_{loss})} \]

The IPCC Tier 1 emissions factors for peatland degradation are disaggregated by climate zone (tropical, temperate, and boreal), soil fertility status (nutrient-poor versus nutrient rich), and the driver of degradation (many subclasses of forestry, cropland, grassland, and peat extraction) (IPCC 2014; Tables 2.1–2.5). Table III.5 of Annex III of the Global Peatlands Assessment provides a summarized set of emissions factors based directly on the IPCC values but aggregated to the four coarser classes of degradation drivers listed above (UNEP, 2022), which we use for our analysis. They include the following pathways: CO₂ from peat oxidation, off-site emissions from lateral transport of dissolved organic carbon (DOC), methane emissions from the field and drainage ditches, and nitrous oxide emissions from the field. Particulate organic carbon (POC) losses may be substantial, but were not included in the IPCC methodology due to uncertainties about the fate of transported POC. These emissions factors are reported as annual rates per disturbed hectare, and emissions from these pathways continue over long periods of time.

Three additional pathways that are not included in the IPCC protocol are relevant to the emissions accounting for this analysis: the loss of carbon sequestration potential from leaving the peatland intact, the methane emissions that occur from intact peatlands, and the emissions from removal of the vegetation overlying peat soils. Leifield et al. (2019) reported the annual net carbon uptake per hectare of intact peatlands, including sequestration of carbon in peat minus naturally occurring methane emissions due to the anoxic conditions. If the peatland is not disturbed, these methane emissions and carbon sequestration will persist indefinitely on an annual basis. 

We accounted for emissions from removal of biomass using a separate protocol than emissions occurring from the peat soil due to differences in the temporal dynamics of loss. While all other emissions from peat occur on an annual basis and continue for many decades or longer, emissions from biomass occur relatively quickly. Biomass clearing produces a rapid pulse of emissions from labile carbon pools followed by a declining, but persistent, rate of emissions as more recalcitrant carbon pools decay over subsequent years. The entire biomass carbon stock is likely to be lost within 30 years. Average biomass carbon stocks over the extent of the peatland distribution in the GPM were calculated by latitude band based on the above and below ground biomass carbon stock data from Spawn et al. (2020). We presumed 100% of the biomass carbon stock is lost from peatland degradation, though in many cases some amount of biomass remains following degradation, depending on the terminal land use.

Peatland Degradation Drivers 

Emissions from peatland loss depend on the driver of degradation (e.g., forestry, cropland, peat extraction; IPCC 2014). The GPD contains national-scale estimates of historical peatland loss by driver, which we used to calculate weights for each driver, reflecting the proportion of peatland loss attributable to each driver by latitude band. We took the weighted average of the driver-specific peatland emissions factors, calculated as the sum of the products of the weights and the driver-specific emissions factors.

Appendix References

Garnett, S. T., Burgess, N. D., Fa, J. E., Fernández-Llamazares, Á., Molnár, Z., Robinson, C. J., Watson, J. E. M., Zander, K. K., Austin, B., Brondizio, E. S., Collier, N. F., Duncan, T., Ellis, E., Geyle, H., Jackson, M. V., Jonas, H., Malmer, P., McGowan, B., Sivongxay, A., & Leiper, I. (2018). A spatial overview of the global importance of Indigenous lands for conservation. Nature Sustainability1(7), 369–374. https://doi.org/10.1038/s41893-018-0100-6

IPCC Task Force on National Greenhouse Gas Inventories. (2014). 2013 supplement to the 2006 IPCC guidelines for national greenhouse gas inventories: Wetlands (T. Hiraishi, T. Krug, K. Tanabe, N. Srivastava, J. Baasansuren, M. Fukuda, & T. G. Troxler, Eds.). Intergovernmental Panel on Climate Change. https://www.ipcc.ch/site/assets/uploads/2018/03/Wetlands_Supplement_Entire_Report.pdf

Leifeld, J., Wüst-Galley, C., & Page, S. (2019). Intact and managed peatland soils as a source and sink of GHGs from 1850 to 2100. Nature Climate Change9(12), 945–947. https://doi.org/10.1038/s41558-019-0615-5

Spawn, S. A., Sullivan, C. C., Lark, T. J., & Gibbs, H. K. (2020). Harmonized global maps of above and belowground biomass carbon density in the year 2010. Scientific Data7(1), 112. https://doi.org/10.1038/s41597-020-0444-4

UNEP. (2022). Global peatlands assessment: The state of the world’s peatlands: Evidence for action toward the conservation, restoration, and sustainable management of peatlands. https://www.unep.org/resources/global-peatlands-assessment-2022

UNEP-WCMC and IUCN (2024), Protected Planet: The World Database on Protected Areas (WDPA) and World Database on Other Effective Area-based Conservation Measures (WD-OECM) [Online], Accessed November 2024, Cambridge, UK: UNEP-WCMC and IUCN. Available at: www.protectedplanet.net.

Wolf, C., Levi, T., Ripple, W. J., Zárrate-Charry, D. A., & Betts, M. G. (2021). A forest loss report card for the world’s protected areas. Nature Ecology & Evolution5(4), 520–529. https://doi.org/10.1038/s41559-021-01389-0

Credits

Lead Fellow

  • Avery Driscoll

Contributors

  • Ruthie Burrows, Ph.D.

  • James Gerber, Ph.D.

  • Daniel Jasper

  • Alex Sweeney

Internal Reviewers

  • Aiyana Bodi

  • Hannah Henkin

  • Megan Matthews, Ph.D.

  • Ted Otte

  • Christina Swanson, Ph.D.

  • Paul C. West, Ph.D.

  • Greenhouse gas quantity expressed relative to CO₂ with the same warming impact over 100 years, calculated by multiplying emissions by the 100-yr GWP for the emitted gases.

  • Greenhouse gas quantity expressed relative to CO with the same warming impact over 20 years, calculated by multiplying emissions by the 20-yr GWP for the emitted gases.

  • 8th World Congress on Conservation Agriculture

  • Reducing greenhouse gas concentrations in the atmosphere by preventing or reducing emissions.

  • The process of increasing acidity.

  • The extent to which emissions reduction or carbon removal is above and beyond what would have occurred without implementing a particular action or solution.

  • An upper limit on solution adoption based on physical or technical constraints, not including economic or policy barriers. This level is unlikely to be reached and will not be exceeded.

  • The quantity and metric to measure implementation for a particular solution that is used as the reference unit for calculations within that solution.

  • A composting method in which organic waste is processed in freestanding piles that can be aerated actively with forced air or passively by internal convection.

  • The interactions of aerodynamic forces and flexible structures, often including the stucture's control system.

  • A process in which microbes break down organic materials in the presence of oxygen. This process converts food and green waste into nutrient-rich compost.

  • Farming practices that work to create socially and ecologically sustainable food production.

  • Addition of trees and shrubs to crop or animal farming systems.

  • Spread out the cost of an asset over its useful lifetime.

  • A crop that live one year or less from planting to harvest; also called annual.

  • aerated static piles

  • black carbon

  • Made from material of biological origin, such as plants, animals, or other organisms.

  • A renewable energy source generated from organic matter from plants and/or algae.

  • An energy source composed primarily of methane and CO that is produced by microorganisms when organic matter decomposes in the absence of oxygen.

  • Carbon stored in biological matter, including soil, plants, fungi, and plant products (e.g., wood, paper, biofuels). This carbon is sequestered from the atmosphere but can be released through decomposition or burning.

  • Living or dead renewable matter from plants or animals, not including organic material transformed into fossil fuels. Peat, in early decay stages, is partially renewable biomass.

  • Biogas refined to the same quality as natural gas. CO₂ and impurities are removed, and the biomethane can be distributed and used in existing natural gas technologies.
     

  • A type of carbon sequestration that captures carbon from CO via photosynthesis and stores it in soils, sediments, and biomass, distinct from sequestration through chemical or industrial pathways.

  • A climate pollutant, also called soot, produced from incomplete combustion of organic matter, either naturally (wildfires) or from human activities (biomass or fossil fuel burning).

  • A secure, decentralized way of digitally tracking transactions that could be used to improve the transparency and efficiency of carbon markets. 

  • High-latitude (>50°N or >50°S) climate regions characterized by short growing seasons and cold temperatures.

  • The components of a building that physically separate the indoors from the outdoor environment.

  • Businesses involved in the sale and/or distribution of solution-related equipment and technology, and businesses that want to support adoption of the solution.

  • A chemical reaction involving heating a solid to a high temperature; to make cement clinker, limestone is calcined into lime in a process that requires high heat and produces CO.

  • The ratio of the actual electricity an energy technology generates over a period of time to the maximum it could have produced if it operated at full capacity continuously.

  • A four-wheeled passenger vehicle.

  • Average number of people traveling in a car per trip.

  • Technologies that collect CO before it enters the atmosphere, preventing emissions at their source. Collected CO can be used onsite or in new products, or stored long term to prevent release.

  • A greenhouse gas that is naturally found in the atmosphere. Its atmospheric concentration has been increasing due to human activities, leading to warming and climate impacts.

  • Total GHG emissions resulting from a particular action, material, technology, or sector.

  • Amount of GHG emissions released per activity or unit of production. 

  • A marketplace where carbon credits are purchased and sold. One carbon credit represents activities that avoid, reduce, or remove one metric ton of GHG emissions.

  • A colorless, odorless gas released during the incomplete combustion of fuels containing carbon. Carbon monoxide can harm health and be fatal at high concentrations.

  • The time it takes for the emissions reduction from a measure to equal the emissions invested in implementing the measure.

  • Activities or technologies that pull CO out of the atmosphere, including enhancing natural carbon sinks and deploying engineered sinks.

  • Long-term storage of carbon in soils, sediment, biomass, oceans, and geologic formations after removal of CO from the atmosphere or CO capture from industrial and power generation processes.

  • carbon capture and storage

  • carbon capture, utilization, and storage

  • A binding ingredient in concrete responsible for most of concrete’s life-cycle emissions. Cement is made primarily of clinker mixed with other mineral components.

  • chlorofluorocarbon

  • methane

  • Energy sources that have little to no negative environmental or climate impacts during operation relative to fossil fuel–based energy sources.

  • Gases or particles that have a planet-warming effect when released to the atmosphere. Some climate pollutants also cause other forms of environmental damage.

  • A binding ingredient in cement responsible for most of the life-cycle emissions from cement and concrete production.

  • A waste management process where waste is made into the same original product, preserving quality and value so materials can be reused multiple times while keeping resources in continuous use.

  • carbon monoxide

  • Neighbors, volunteer organizations, hobbyists and interest groups, online communities, early adopters, individuals sharing a home, and private citizens seeking to support the solution.

  • A solution that potentially lowers the benefit of another solution through reduced effectiveness, higher costs, reduced or delayed adoption, or diminished global climate impact.

  • A farming system that combines reduced tillage, cover crops, and crop rotations.

  • A risk-sharing financial agreement in which two parties (e.g., renewable generator, government) guarantee a fixed price (e.g., electricity price). If market prices fluctuate, one party pays the other the difference.

  • carbon dioxide

  • A  measure standardizing the warming effects of greenhouse gases relative to CO. CO-eq is calculated as quantity (metric tons) of a particular gas multiplied by its GWP.

  • carbon dioxide equivalent

  • Plant materials left over after a harvest, such as stalks, leaves, and seed husks.

  • A granular material made by crushing broken or waste glass.

  • direct air capture

  • Financial agreements in which government creditors forgive a portion of debt in exchange for specific conservation commitments.

  • The process of cutting greenhouse gas emissions (primarily CO) from a particular sector or activity.

  • An industrial process that removes printing ink from used or waste paper fibers, creating clean pulp that can be turned into new paper products.

  • A solution that works slower than gradual solutions and is expected to take longer to reach its full potential.

  • Microbial conversion of nitrate into inert nitrogen gas under low-oxygen conditions, which produces the greenhouse gas nitrous oxide as an intermediate compound.

  • Greenhouse gas emissions produced as a direct result of the use of a technology or practice.

  • A window consisting of two glass panes separated by a sealed gap and typically filled with air or an inert gas to improve the heat flow resistance.

  • A waste management system that transforms waste into different products of lower quality and value, making materials harder to recycle again and limiting reuse.

  • Ability of a solution to reduce emissions or remove carbon, expressed in CO-eq per installed adoption unit. Effectiveness is quantified per year when the adoption unit is cumulative over time.

  • A process that uses electric current to drive a reaction, such as using electricity to split water molecules into hydrogen and oxygen.

  • Greenhouse gas emissions accrued over the lifetime of a material or product, including as it is produced, transported, used, and disposed of.

  • Solutions that work faster than gradual solutions, front-loading their impact in the near term.

  • Methane produced by microbes in the digestive tracts of ruminant livestock, such as cattle, sheep and goats.

  • U.S. Environmental Protection Agency

  • expanded polystyrene

  • environmental, social, and governance

  • exchange-traded fund

  • A process triggered by an overabundance of nutrients in water, particularly nitrogen and phosphorus, that stimulates excessive plant and algae growth and can harm aquatic organisms.

  • Electric vehicle

  • An ecological process that releases water into the atmosphere as a gas from soil and ice (evaporation) and plants (transpiration).

     

  • The scientific literature that supports our assessment of a solution's effectiveness.

  • A group of human-made molecules that contain fluorine atoms. They are potent greenhouse gases with GWPs that can be hundreds to thousands times higher than CO.

  • Food, agriculture, land, and ocean

  • Food and Agriculture Organization of the United Nations

  • feed conversion ratio

  • The efficiency with which an animal converts feed into increased body mass, measured as the ratio of the weight of the feed given to weight gain. Lower FCR means less feed for the same growth.

  • Raw material inputs for manufacturing, processing, and managing waste.

  • Containing or consisting of iron.

  • A measure of fishing activity over time and area, commonly measured by number of trips, vessel time, or gear deployed.

  • food loss and waste

  • Food discarded during pre-consumer supply chain stages, including production, harvest, and processing.

  • Food discarded during pre-consumer supply chain stages, including production, harvest, and processing, along with food discarded wt the retail and consumer stages of the supply chain.

  • Food discarded at the retail and consumer stages of the supply chain.

  • Combustible materials found in Earth's crust that can be burned for energy, including oil, natural gas, and coal. They are formed from decayed organisms through prehistoric geological processes.

  • Unintentional leaks of gases or vapor into the atmosphere.

  • Unintentional leaks of gases or vapor into the atmosphere.

  • A group of countries representing the majority of the world's population, trade, and GDP. There are 19 member countries plus the European Union and the African Union

  • greenhouse gas

  • gigajoule or billion joules

  • The glass layers or panes in a window.

  • A measure of how effectively a gas traps heat in the atmosphere relative to CO. GWP converts greenhouse gases into CO-eq emissions based on their 20- or 100-year impacts.

  • A solution that has a steady impact on the atmosphere. Effectiveness is expected to be constant over time rather than having a higher impact in the near or long term.

  • A fixed income debt instrument focused on sustainable projects. Green bonds work in the same manner as traditional bonds and may be issued by corporations, financial institutions, and governments.

  • Biomass discarded during landscaping and gardening.

  • A gas that traps heat in the atmosphere, contributing to climate change.

  • The makeup of electricity generation on a power grid, showing the share contributed by various energy sources (e.g., coal, natural gas, nuclear, wind, solar, hydro) relative to total electricity production.

  • metric gigatons or billion metric tons

  • global warming potential

  • hectare

  • household air pollution

  • hydrochlorofluorocarbon

  • Number of years a person is expected to live without disability or other limitations that restrict basic functioning and activity.

  • A unit of land area comprising 10,000 square meters, roughly equal to 2.5 acres.

  • Hybrid electric car

  • hydrofluorocarbon

  • hydrofluoroolefin

  • hydrofluoroolefin

  • Particles and gases released from use of polluting fuels and technologies such as biomass cookstoves that cause poor air quality in and around the home.

  • heating, ventilation, air conditioning, and refrigeration

  • Organic compounds that contain hydrogen and carbon.

  • Human-made F-gases that contain hydrogen, fluorine, and carbon. They typically have short atmospheric lifetimes and GWPs hundreds or thousands times higher than CO

  • Human-made F-gases that contain hydrogen, fluorine, and carbon, with at least one double bond. They have low GWPs and can be climate-friendly alternatives to HFC refrigerants.

  • Hydrogen is a gas that can be a fuel, feedstock, or means of storing energy. It generates water instead of GHG when burned, but the process of producing it can emit high levels of GHGs. 

  • Hydrogen is a gas that can be a fuel, feedstock, or means of storing energy. It generates water instead of GHG when burned, but the process of producing it can emit high levels of GHGs. 

  • A recycling process that separates fibers from contaminants for reuse. Paper or cardboard is mixed with water to break down fibrous materials into pulp.

  • internal combustion engine

  • Aerobic decomposition of organic waste in a sealed container or bin/bay system. 

  • Greenhouse gas emissions produced as a result of a technology or practice but not directly from its use.

  • Device used to power vehicles by the intake, compression, combustion, and exhaust of fuel that drives moving parts.

  • The annual discount rate that balances net cash flows for a project over time. Also called IRR, internal rate of return is used to estimate profitability of potential investments.

  • Individuals or institutions willing to lend money in search of a return on their investment.

  • Intergovernmental Panel on Climate Change

  • Indigenous peoples’ land

  • Integrated pest management.

  • internal rate of return

  • International Union for Conservation of Nature

  • The most comprehensive global list of species threatened with extinction, maintained by the International Union for Conservation of Nature.

  • International agreement adopted in 2016 to phase down the use of high-GWP HFC F-gases over the time frame 2019–2047.

  • A measure of energy equivalent to the energy delivered by 1,000 watts of power over one hour.

  • kiloton or one thousand metric tons

  • kilowatt-hour

  • A land-holding system, e.g. ownership, leasing, or renting. Secure land tenure means farmers or other land users will maintain access to and use of the land in future years.

  • Gases, mainly methane and CO, created by the decomposition of organic matter in the absence of oxygen.

  • levelized cost of electricity

  • leak detection and repair

  • Regular monitoring for fugitive methane leaks throughout oil and gas, coal, and landfill sector infrastructure and the modification or replacement of leaking equipment.

  • Relocation of emissions-causing activities outside of a mitigation project area rather than a true reduction in emissions.

  • The rate at which solution costs decrease as adoption increases, based on production efficiencies, technological improvements, or other factors.

  • Percent decrease in costs per doubling of adoption.

  • A metric describing the expected break-even cost of generating electricity per megawatt-hour ($/MWh), combining costs related to capital, operation, and fuel (if used) and dividing by total output over the generator's lifetime.

  • landfill gas

  • Greenhouse gas emissions from the sourcing, production, use, and disposal of a technology or practice.

  • The total weight of an organism before any meat processing.

  • low- and middle-income countries

  • liquefied petroleum gas

  • land use change

  • A measure of the amount of light produced by a light source per energy input.

  • live weight

  • marginal abatement cost curve

  • Livestock grazing practices that strategically manage livestock density, grazing intensity, and timing. Also called improved grazing, these practices have environmental, soil health, and climate benefits, including enhanced soil carbon sequestration.

  • A tool to measure and compare the financial cost and abatement benefit of individual actions based on the initial and operating costs, revenue, and emission reduction potential.

  • Defined by the International Union for Conservation of Nature as: "A clearly defined geographical space, recognised, dedicated and managed, through legal or other effective means, to achieve the long-term conservation of nature with associated ecosystem services and cultural values." References to PAs here also include other effective area-based conservation measures defined by the IUCN. 

  • A facility that receives recyclable waste from residential, commercial, and industrial sources; separates, processes, and prepares them; and then sells them to manufacturers for reuse in new products.

  • A measure of energy equivalent to the energy delivered by one million watts of power over one hour.

  • A greenhouse gas with a short lifetime and high GWP that can be produced through a variety of mechanisms including the breakdown of organic matter.

  • A measure of mass equivalent to 1,000 kilograms (~2,200 lbs).

  • million hectares

  • Soils mostly composed of inorganic materials formed through the breakdown of rocks. Most soils are mineral soils, and they generally have less than 20% organic matter by weight.

  • A localized electricity system that independently generates and distributes power. Typically serving limited geographic areas, mini-grids can operate in isolation or interconnected with the main grid.

  • Reducing the concentration of greenhouse gases in the atmosphere by cutting emissions or removing CO.

  • megajoule or one million joules

  • Percent of trips made by different passenger and freight transportation modes.

  • Marine Protected Area

  • materials recovery facility

  • Municipal solid waste

  • megaton or million metric tons

  • Materials discarded from residential and commercial sectors, including organic waste, glass, metals, plastics, paper, and cardboard.

  • Megawatt-hour

  • micro wind turbine

  • square meter kelvins per watt (a measure of thermal resistance, also called R-value)

  • The enclosed housing at the top of a wind turbine tower that contains the main mechanical and electrical components of the turbine.

  • A commitment from a country to reduce national emissions and/or sequester carbon in alignment with global climate goals under the Paris Agreement, including plans for adapting to climate impacts.

  • A gaseous form of hydrocarbons consisting mainly of methane.

  • Chemicals found in nature that are used for cooling and heating, such as CO, ammonia, and some hydrocarbons. They have low GWPs and are ozone friendly, making them climate-friendly refrigerants.

  • Microbial conversion of ammonia or ammonium to nitrite and then to nitrate under aerobic conditions.

  • A group of air pollutant molecules composed of nitrogen and oxygen, including NO and NO.

  • A greenhouse gas produced during fossil fuel combustion and agricultural and industrial processes. NO is hundreds of times more potent than CO at trapping atmospheric heat, and it depletes stratospheric ozone.

  • Metals or alloys that do not contain significant amounts of iron.

  • Social welfare organizations, civic leagues, social clubs, labor organizations, business associations, and other not-for-profit organizations.

  • A material or energy source that relies on resources that are finite or not naturally replenished at the rate of consumption, including fossil fuels like coal, oil, and natural gas.

  • nitrogen oxides

  • nitrous oxide

  • The process of increasing the acidity of seawater, primarily caused by absorption of CO from the atmosphere.

  • An agreement between a seller who will produce future goods and a purchaser who commits to buying them, often used as project financing for producers prior to manufacturing.

  • Waste made of plant or animal matter, including food waste and green waste.

  • organic waste

  • Protected Area

  • Productive use of wet or rewetted peatlands that does not disturb the peat layer, such as for hunting, gathering, and growing wetland-adapted crops for food, fiber, and energy.

  • A legally protected area that lacks effective enforcement or management, resulting in minimal to no conservation benefit.

  • Airborne particles composed of solids and liquids.

  • A measure of transporting one passenger over a distance of one kilometer.

  • Incentive payments to landowners or managers to conserve natural resources and promote healthy ecological functions or ecosystem services.

  • Small, hardened pieces of plastic made from cooled resin that can be melted to make new plastic products.

  • The longevity of any greenhouse gas emission reductions or removals. Solution impacts are considered permanent if the risk of reversing the positive climate impacts is low within 100 years.

  • Payments for ecosystem services

  • A mixture of hydrocarbons, small amounts of other organic compounds, and trace amounts of metals used to produce products such as fuels or plastics.

  • Per- and polyfluoroalkyl substances, a class of synthetic chemicals that do not degrade easily in the environment. They can pollute the environment and can have negative impacts on human health.

  • Reduce the use of a material or practice over time.

  • Eliminate the use of a material or practice over time.

  • Plug-in hybrid electric car

  • Private, national, or multilateral organizations dedicated to providing aid through in-kind or financial donations.

  • An atmospheric reaction among sunlight, VOCs, and nitrogen oxide that leads to ground-level ozone formation. Ground-level ozone, a component of smog, harms human health and the environment.

  • The process by which sunlight is converted into electricity. When light hits certain materials, such as those in solar panels, it mobilizes electrons, creating an electric current.

  • polyisocyanurate

  • The adjustment of turbine blade angles around their long axis in which a control system rotates blades slightly forward or backward to regulate wind capture and optimize electricity generation.

  • passenger kilometer

  • particulate matter

  • Particulate matter 2.5 micrometers or less in diameter that can harm human health when inhaled.

  • Elected officials and their staff, bureaucrats, civil servants, regulators, attorneys, and government affairs professionals.

  • System in a vehicle that generates power and delivers it to the wheels. It typically includes an engine and/or motor, transmission, driveshaft, and differential.

  • Purchase Power Agreement.

  • People who most directly interface with a solution and/or determine whether the solution is used and/or available. 

  • A substance that is the starting material for a chemical reaction that forms a different substance.

  • Extraction of naturally occurring resources from the Earth, including mining, logging, and oil and gas refining. These resources can be used in raw or minimally processed forms to produce materials.

  • The process of converting inorganic matter, including carbon dioxide, into organic matter (biomass), primarily by photosynthetic organisms such as plants and algae.

  • Defined by the International Union for the Conservation of Nature as "A clearly defined geographical space, recognised, dedicated and managed, through legal or other effective means, to achieve the long-term conservation of nature with associated ecosystem services and cultural values". References to PAs here also include other effective area-based conservation measures defined by the IUCN. 

  • A process that separates and breaks down wood and other raw materials into fibers that form pulp, the base ingredient for making paper products.

  • polyurethane

  • Long-term contract between a company (the buyer) and a renewable energy producer (the seller).

  • photovoltaic

  • research and development

  • A situation in which improvements in efficiency or savings lead to consumers increasing consumption, partially or fully offsetting or exceeding the emissions or cost benefits.

  • renewable energy certificate

  • Chemical or mixture used for cooling and heating in refrigeration, air conditioning, and heat pump equipment. Refrigerants absorb and release heat as they move between states under changing pressure.

  • The amount of refrigerant needed for a particular refrigeration, air conditioning, or heat pump system.

  • A group of approaches to farming and ranching that emphasizes enhancing the health of soil by restoring its carbon content and providing other benefits to the farm and surrounding ecosystem.

  • A solution that can increase the beneficial impact of another solution through increased effectiveness, lower costs, improved adoption, enhanced global climate impact, and/or other benefits to people and nature.

  • A material or energy source that relies on naturally occuring and replenishing resources such as plant matter, wind, or sunlight.

  • A market-based instrument that tracks ownership of renewable energy generation.

  • The moldable form of raw plastic material, created by melting down waste or virgin plastics and serving as the building block for creating new plastic goods.

  • A class of animals with complex stomachs that can digest grass. Most grazing livestock are ruminants including cows, sheep, and goats along with several other species.

  • sustainable aviation fuel

  • A wetland ecosystem regularly flooded by tides and containing salt-tolerant plants, such as grasses and herbs.

  • Very large or small numbers are formatted in scientific notation. A positive exponent multiplies the number by powers of ten; a negative exponent divides the number by powers of ten.

  • Seasonal coefficient of performance

  • Sustainable Development Goals

  • Average units of heat energy released for every unit of electrical energy consumed, used to measure heat pump efficiency.

  • A practice in which multiple utility companies own and operate high-voltage power lines, sharing both costs and benefits.

  • A window consisting of one glass pane without any additional insulating layers.

  • Small-scale family farmers and other food producers, often with limited resources, usually in the tropics. The average size of a smallholder farm is two hectares (about five acres).

  • soil organic carbon

  • Carbon stored in soils, including both organic (from decomposing plants and microbes) and inorganic (from carbonate-containing minerals).

  • Carbon stored in soils in organic forms (from decomposing plants and microbes). Soil organic carbon makes up roughly half of soil organic matter by weight.

  • Biologically derived matter in soils, including living, dead, and decayed plant and microbial tissues. Soil organic matter is roughly half carbon on a dry-weight basis.

  • soil organic matter

  • A substance that takes up another liquid or gas substance, either by absorbtion or adsorption.

  • sulfur oxides

  • sulfur dioxide

  • The rate at which a climate solution physically affects the atmosphere after being deployed. At Project Drawdown, we use three categories: emergency brake (fastest impact), gradual, or delayed (slowest impact).

  • Climate regions between latitudes 23.4° to 35° above and below the equator characterized by warm summers and mild winters.

  • A polluting gas produced primarily from burning fossil fuels and industrial processes that directly harms the environment and human health.

  • A group of gases containing sulfur and oxygen that predominantly come from burning fossil fuels. They contribute to air pollution, acid rain, and respiratory health issues.

  • Processes, people, and resources involved in producing and delivering a product from supplier to end customer, including material acquisition.

  • Sport utility vehicle

  • metric ton

  • metric tons

  • Technology developers, including founders, designers, inventors, R&D staff, and creators seeking to overcome technical or practical challenges.

  • Climate regions between 35° to 50° above and below the equator characterized by moderate mean annual temperatures and distinct seasons, with warm summers and cold winters.

  • A measure of energy equivalent to the energy delivered by one trillion watts of power over one hour.

  • trifluoroacetic acid

  • trifluoroacetic acid

  • A measure of how well a material prevents heat flow, often called R-value or RSI-value for insulation. A higher R-value means better thermal performance.

  • Individuals with an established audience for their work, including public figures, experts, journalists, and educators.

  • Charges for disposal of materials paid to facility operators. Fees can be charged per ton of waste disposed or based on economic indicators such as the Consumer Price Index.

  • A window consisting of three panes of glass separated by two insulating inert gas-filled layers, providing more heat flow resistance than single or double glazing.

  • Low-latitude (23.4°S to 23.4°N) climate regions near the Equator characterized by year-round high temperatures and distinct wet and dry seasons.

  • Terawatt, equal to 1,000 gigawatts

  • terawatt-hour

  • United Nations

  • United Nations Environment Programme

  • Self-propelled machine for transporting passengers or freight on roads.

  • A measure of one vehicle traveling a distance of one kilometer.

  • Aerobic decomposition of organic waste by earthworms and microorganisms.

  • vehicle kilometer

  • volatile organic compound

  • Gases made of organic, carbon-based molecules that are readily released into the air from other solid or liquid materials. Some VOCs are greenhouse gases or can harm human health.

  • watt (a measure of power or energy transfer.)

  • Landscape waste, storm debris, wood processing residues, and recovered post-consumer wood.

  • A measure of power equal to one joule per second.

  • Aerobic decomposition of organic waste in long, narrow rows called windrows. Windrows are generally twice as long as they are wide.

  • A subset of forest ecosystems that may have sparser canopy cover,  smaller-stature trees, and/or trees characterized by basal branching rather than a single main stem.

  • extruded polystyrene

  • The rotation of the nacelle (the enclosed housing at the top of a wind turbine tower that contains the main mechanical and electrical components of the turbine) so that the rotor blades are always facing directly into the wind.

  • year

Support Climate Action

Drawdown Delivered

Join the 85,000+ subscribers discovering how to drive meaningful climate action around the world! Every other week, you'll get expert insights, cutting-edge research, and inspiring stories.

Receive biweekly email newsletter updates from Project Drawdown. Unsubscribe at any time.